Background-Ex vivo expansion of resident cardiac stem cells, followed by delivery to the heart, may favor regeneration and functional improvement. Methods and Results-Percutaneous endomyocardial biopsy specimens grown in primary culture developed multicellular clusters known as cardiospheres, which were plated to yield cardiosphere-derived cells (CDCs). CDCs from human biopsy specimens and from comparable porcine samples were examined in vitro for biophysical and cytochemical evidence of cardiogenic differentiation. In addition, human CDCs were injected into the border zone of acute myocardial infarcts in immunodeficient mice. Biopsy specimens from 69 of 70 patients yielded cardiosphere-forming cells. Cardiospheres and CDCs expressed antigenic characteristics of stem cells at each stage of processing, as well as proteins vital for cardiac contractile and electrical function. Human and porcine CDCs cocultured with neonatal rat ventricular myocytes exhibited biophysical signatures characteristic of myocytes, including calcium transients synchronous with those of neighboring myocytes. Human CDCs injected into the border zone of myocardial infarcts engrafted and migrated into the infarct zone. After 20 days, the percentage of viable myocardium within the infarct zone was greater in the CDC-treated group than in the fibroblast-treated control group; likewise, left ventricular ejection fraction was higher in the CDC-treated group. Conclusions-A method is presented for the isolation of adult human stem cells from endomyocardial biopsy specimens.CDCs are cardiogenic in vitro; they promote cardiac regeneration and improve heart function in a mouse infarct model, which provides motivation for further development for therapeutic applications in patients. Key Words: cells Ⅲ biopsy Ⅲ electrophysiology Ⅲ myocardial infarction Ⅲ myocytes W e sought to develop a clinically applicable method for the isolation and expansion of adult stem cells capable of regenerating myocytes and vessels and improving function in the injured heart. Given recent evidence that the adult mammalian heart contains endogenous, cardiac-committed stem cells, 1-5 we began with cardiac tissue as our stem cell source, postulating that cardiac-derived cells might be particularly well-suited for myocardial regeneration. Percutaneous endomyocardial biopsy specimens were utilized as a convenient, minimally invasive tissue source. 6,7 We began with the observation that cardiac surgical biopsy specimens in culture yield spherical multicellular clusters dubbed "cardiospheres." 8 Cardiospheres resemble neurospheres 9 in that they are derived from primary tissue culture and contain many proliferative cells that express stem cell-related antigens, as well as other cells undergoing spontaneous cardiac differentiation. 8 We modified the original culture method to improve efficiency and added a postcardiosphere expansion step to obtain reasonable numbers of cells (cardiosphere-derived cells [CDCs]) for transplantation from the small specimens in a timely manner. Editori...
Virtually all cells in the organism secrete extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membrane-enclosed vesicles that transport and deliver payloads of proteins and nucleic acids to recipient cells, thus playing central roles in cell-cell communications. Exosomes, nanosized EVs of endosomal origin, regulate many pathophysiological processes including immune responses and inflammation, tumour growth, and infection. Healthy subjects and patients with different diseases release exosomes with different RNA and protein contents into the circulation, which can be measured as biomarkers. The discovery of exosomes as natural carriers of functional small RNA and proteins has raised great interest in the drug delivery field, as it may be possible to harness these vesicles for therapeutic delivery of miRNA, siRNA, mRNA, lncRNA, peptides, and synthetic drugs. However, systemically delivered exosomes accumulate in liver, kidney, and spleen. Targeted exosomes can be obtained by displaying targeting molecules, such as peptides or antibody fragments recognizing target antigens, on the outer surface of exosomes. Display of glycosylphosphatidylinositol (GPI)-anchored nanobodies on EVs is a novel technique that enables EV display of a variety of proteins including antibodies, reporter proteins, and signaling molecules. However, naturally secreted exosomes show limited pharmaceutical acceptability. Engineered exosome mimetics that incorporate desirable components of natural exosomes into synthetic liposomes or nanoparticles, and are assembled using controllable procedures may be more acceptable pharmaceutically. In this communication, we review the current understanding of physiological and pathophysiological roles of exosomes, their potential applications as diagnostic markers, and current efforts to develop improved exosome-based drug delivery systems.
EVs are the active component of the paracrine secretion by human CPCs. As a cell-free approach, EVs could circumvent many of the limitations of cell transplantation.
Exosomes are extracellular vesicles of endosomal origin which have emerged as key mediators of intercellular communication. All major cardiac cell types-including cardiomyocytes, endothelial cells, and fibroblasts-release exosomes that modulate cellular functions. Exosomes released from human cardiac progenitor cells (CPCs) are cardioprotective and improve cardiac function after myocardial infarction to an extent comparable with that achieved by their parent cells. Cardiac progenitor cell-derived exosomes are enriched in cardioprotective microRNAs, particularly miR-146a-3p. Circulating exosomes mediate remote ischaemic preconditioning. Moreover, they currently are being investigated as diagnostic markers. The discovery that cell-derived extracellular signalling organelles mediate the paracrine effects of stem cells suggests that cell-free strategies could supplant cell transplantation. This review discusses emerging roles of exosomes in cardiovascular physiology, with a focus on cardioprotective activities of CPC-derived exosomes.
These results suggest that CPC-secreted exosomes may be more cardioprotective than BMC-secreted exosomes, and that PAPP-A-mediated IGF-1 release may explain the benefit. They illustrate a general mechanism whereby exosomes may function via an active protease on their surface, which releases a ligand in proximity to the transmembrane receptor bound by the ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.