Control of helminth parasites is a key challenge for human and veterinary medicine. In the absence of effective vaccines and adequate sanitation, prophylaxis and treatment commonly rely upon anthelmintics. There are concerns about the development of drug resistance, side-effects, lack of efficacy and cost-effectiveness that drive the need for new classes of anthelmintics. Despite this need, only three new drug classes have reached the animal market since 2000 and no new classes of anthelmintic have been approved for human use. So where are all the anthelmintics? What are the barriers to anthelmintic discovery, and what emerging opportunities can be used to address this? This was a discussion group focus at the 2019 8th Consortium for Anthelmintic Resistance and Susceptibility (CARS) in Wisconsin, USA. Here we report the findings of the group in the broader context of the human and veterinary anthelmintic discovery pipeline, highlighting challenges unique to antiparasitic drug discovery. We comment on why the development of novel anthelmintics has been so rare. Further, we discuss potential opportunities for drug development moving into the 21st Century.
Anthelmintic resistance in human and animal pathogenic helminths has been spreading in prevalence and severity. Multidrug resistance is a widespread problem in livestock animals. The use of available pharmacology-based information is critical to the design of successful future approaches for parasite control. Relevant scientific work supporting the main strategies to optimize anthelmintic therapy in ruminants under the current drug-resistance scenario is described here. We emphasize the need for further integrated pharmaco-parasitological knowledge to extend the lifespan of both traditional and novel anthelmintic compounds, and to progress in the identification of complementary/alternative measures of parasite control in livestock animals.
Helminth infections represent a serious problem for the production of small ruminants that is currently aggravated by resistance to anthelmintic products and has induced a search for control alternatives, such as natural products. In this study, extracts of Turnera ulmifolia L. (leaves and roots), Parkia platycephala Benth. (leaves and seeds) and Dimorphandra gardneriana Tul. (leaves and bark), which have been cited in ethnoveterinary studies and selected naturally by goats in the cerrado (Brazilian savanna), were tested in vitro against Haemonchus contortus. Hydroacetonic (ACT) and hydroalcoholic (ETH) extracts were evaluated using an Egg Hatching Assay (EHA), a Larval Exsheathment Inhibition Assay (LEIA) and a Larval Development Assay (LDA). A second set of incubations was performed using polyvinylpolypyrrolidone (PVPP) to determine the influence of polyphenols on the anthelmintic effects of EHA and LEIA. Data from each extract were used to calculate inhibition concentrations (IC). All tested extracts showed activity against at least one life stage of H. contortus. The use of PVPP revealed that the tannins are not the only extracts of secondary metabolites responsible for the anthelmintic effects. The results showed clear in vitro anthelmintic activities against H. contortus at different stages and indicated the potential use of these species as a promising alternative approach to control helminthic infections of small ruminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.