Evidence for different physiological properties along the hippocampal longitudinal axis is emerging. Here, we examined the electrophysiological features of neurons at different dorso-ventral sites of the mouse CA1 hippocampal region. Cell position was defined with respect to longitudinal coordinates of each slice. We measured variations in neuronal excitability, subthreshold membrane properties and neurotransmitter responses along the longitudinal axis. We found that (i) pyramidal cells of the dorsal hippocampus (DH) were less excitable than those of the ventral hippocampus (VH). Resting Membrane Potential (RMP) was more hyperpolarized and somatic Input Resistance (Ri) was lower in DH compared to VH. (ii) The Paired-pulse ratio (PPR) of focally induced synaptic responses was systematically reduced from the DH to the VH; (iii) Long-term-potentiation was most pronounced in the DH and fell gradually in the intermediate hippocampus and in the VH; (iv) the frequency of miniature GABAergic events was higher in the VH than in the DH; (v) the PPR of evoked inhibitory post-synaptic current (IPSC) was higher in the DH than in the VH. These findings indicate an increased probability of both GABA and glutamate release and a reduced plasticity in the ventral compared to more dorsal regions of the hippocampus.
An increasing number of studies show that selective serotonin reuptake inhibitors (SSRIs) exert their therapeutic action, at least in part, by amplifying the influence of the living environment on mood. As a consequence, when administered in a favorable environment, SSRIs lead to a reduction of symptoms, but in stressful conditions, they show limited efficacy. Therefore, novel therapeutic approaches able to neutralize the influence of the stressful environment on treatment are needed. The aim of our study was to test whether, in a mouse model of depression, the combined administration of SSRI fluoxetine and metformin, a drug able to improve the metabolic profile, counteracts the limited efficacy of fluoxetine alone when administered in stressful conditions. Indeed, metabolic alterations are associated to both the onset of major depression and the antidepressant efficacy. To this goal, adult C57BL/6 male mice were exposed to stress for 6 weeks; the first two weeks was aimed at generating a mouse model of depression. During the remaining 4 weeks, mice received one of the following treatments: vehicle, fluoxetine, metformin, or a combination of fluoxetine and metformin. We measured liking- and wanting-type anhedonia as behavioral phenotypes of depression and assessed the expression levels of selected genes involved in major depressive disorder and antidepressant response in the dorsal and ventral hippocampus, which are differently involved in the depressive symptomatology. The combined treatment was more effective than fluoxetine alone in ameliorating the depressive phenotype after one week of treatment. This was associated to an increase in IGF2 mRNA expression and enhanced long-term potentiation, specifically in the dorsal hippocampus, at the end of treatment. Overall, the present results show that, when administered in stressful conditions, the combined fluoxetine and metformin treatment may represent a more effective approach than fluoxetine alone in a short term. Finally, our findings highlight the relevance of polypharmacological strategy as effective interventions to increase the efficacy of the antidepressant drugs currently available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.