Citizen science can raise people's understanding of science while helping scientists conduct their research. Yet its potential for driving transformative learning is empirically underexplored. We present the results of a preliminary study with secondary school students engaged in a long-term citizen science project, from the formulation of the research questions to data analysis and discussion. Students learnt about and increased their interest in neuroscience. They were also able to reflect on the role of science for society and valued their involvement as active participants in the research. We discuss the opportunities and challenges of approaching citizen science for transformative learning.
Sharing scientific knowledge in conflict zones may not sound like a priority. Still science communicators can contribute to address social issues by inviting people to experience research practice, engaging them in scientific questioning and constructive dialog.
The current debate over extending inheritance and its evolutionary impact has focused on adding new categories of non-genetic factors to the classical transmission of DNA, and on trying to redefine inheritance. Transmitted factors have been mainly characterized by their directions of transmission (vertical, horizontal, or both) and the way they store variations. In this paper, we leave aside the issue of defining inheritance. We rather try to build an evolutionary conceptual framework that allows for tracing most, if not all forms of transmission and makes sense of their different tempos and modes. We discuss three key distinctions that should in particular be the targets of theoretical and empirical investigation, and try to assess the interplay among them and evolutionary dynamics. We distinguish two channels of transmission (channel 1 and channel 2), two measurements of the temporal dynamics of transmission, respectively across and within generations (durability and residency), and two types of transmitted factors according to their evolutionary relevance (selectively relevant and neutral stable factors). By implementing these three distinctions we can then map different forms of transmission over a continuous space describing the combination of their varying dynamical features. While our aim is not to provide yet another model of inheritance, putting together these distinctions and crossing them, we manage to offer an inclusive conceptual framework of transmission, grounded in empirical observation, and coherent with evolutionary theory. This interestingly opens possibilities for qualitative and quantitative analyses, and is a necessary step, we argue, in order to question the interplay between the dynamics of evolution and the dynamics of multiple forms of transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.