We discuss on the generalized Ulam-Hyers stability for functional equations in a single variable, including the nonlinear functional equations, the linear functional equations, and a generalization of functional equation for the square root spiral. The stability results have been obtained by a fixed point method. This method introduces a metrical context and shows that the stability is related to some fixed point of a suitable operator.
The fixed point method has been applied for the first time, in proving the stability results for functional equations, by Baker (1991); he used a variant of Banach's fixed point theorem to obtain the stability of a functional equation in a single variable. However, most authors follow the approaches involving a theorem of Diaz and Margolis. The main aim of this survey is to present applications of different fixed point theorems to the theory of stability of functional equations, motivated by a problem raised by Ulam in 1940.
In this paper we prove a fixed-point theorem for a class of operators with suitable properties, in very general conditions. Also, we show that some recent fixed-points results in Brzdęk et al., (2011) and Brzdęk and Ciepliński (2011) can be obtained directly from our theorem. Moreover, an affirmative answer to the open problem of Brzdęk and Ciepliński (2011) is given. Several corollaries, obtained directly from our main result, show that this is a useful tool for proving properties of generalized Hyers-Ulam stability for some functional equations in a single variable.
We use a fixed point method, initiated in [V. Radu, Fixed Point Theory 4(2003), No.1, 91-96], to prove the generalized Ulam-Hyers stability of functional equations in single variable for mappings with values in random normed spaces. This result is then used to obtain the stability for Cauchy, quadratic and monomial functional equations. (2000): 39B52, 39B62, 39B82, 47H09.
Mathematics subject classification
Dedicated to Professor Th. M. Rassias, on the occasion of his 60th birthdayWe prove the stability of some equations of a single variable, including a nonlinear functional equation, a linear functional equation as well as a Volterra integral equation, by using the weighted space method. Our results generalize and extend some recent theorems given in this field, with simplified proofs. Several direct applications of these results are also obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.