Disease tolerance is a defense strategy that limits the fitness costs of infection irrespectively of pathogen burden. While restricting iron (Fe) availability to pathogens is perceived as a host defense strategy, the resulting tissue Fe overload can be cytotoxic and promote tissue damage to exacerbate disease severity. Examining this interplay during malaria, the disease caused by Plasmodium infection, we find that expression of the Fe sequestering protein ferritin H chain (FtH) in mice, and ferritin in humans, is associated with reduced tissue damage irrespectively of pathogen burden. FtH protection relies on its ferroxidase activity, which prevents labile Fe from sustaining proapoptotic c-Jun N-terminal kinase (JNK) activation. FtH expression is inhibited by JNK activation, promoting tissue Fe overload, tissue damage, and malaria severity. Mimicking FtH's antioxidant effect or inhibiting JNK activation pharmacologically confers therapeutic tolerance to malaria in mice. Thus, FtH provides metabolic adaptation to tissue Fe overload, conferring tolerance to malaria.
Mammalian target of rapamycin 1 (mTORC1), a master regulator of cellular growth, is activated downstream of growth factors, energy signalling and intracellular essential amino acids (EAAs) such as Leu. mTORC1 activation occurs at the lysosomal membrane, and involves V-ATPase stimulation by intra-lysosomal EAA (inside-out activation), leading to activation of the Ragulator, RagA/B-GTP and mTORC1 via Rheb-GTP. How Leu enters the lysosomes is unknown. Here we identified the lysosomal protein LAPTM4b as a binding partner for the Leu transporter, LAT1-4F2hc (SLC7A5-SLAC3A2). We show that LAPTM4b recruits LAT1-4F2hc to lysosomes, leading to uptake of Leu into lysosomes, and is required for mTORC1 activation via V-ATPase following EAA or Leu stimulation. These results demonstrate a functional Leu transporter at the lysosome, and help explain the inside-out lysosomal activation of mTORC1 by Leu/EAA.
To maintain appropriate body iron levels, iron absorption by the proximal duodenum is thought to be controlled by hepcidin, a polypeptide secreted by hepatocytes in response to high serum iron. Hepcidin limits basolateral iron efflux from the duodenal epithelium by binding and downregulating the intestinal iron exporter ferroportin. Here, we found that mice with an intestinal ferritin H gene deletion show increased body iron stores and transferrin saturation. As expected for iron-loaded animals, the ferritin H-deleted mice showed induced liver hepcidin mRNA levels and reduced duodenal expression of DMT1 and DcytB mRNA. In spite of these feedback controls, intestinal ferroportin protein and (59)Fe absorption were increased more than 2-fold in the deleted mice. Our results demonstrate that hepcidin-mediated regulation alone is insufficient to restrict iron absorption and that intestinal ferritin H is also required to limit iron efflux from intestinal cells.
Ferritin plays a central role in iron metabolism by acting both as iron storage and a detoxifying protein. We generated a ferritin H allele with loxP sites and studied the conditional ferritin H deletion in adult mice. Ten days after Mx-Cre induced deletion, ferritin H messenger RNA (mRNA) was below 5% in the liver, spleen, and bone marrow of deleted mice compared to control littermates. Mice lost their cellular iron stores indicating the requirement of ferritin H in iron deposition. Serum iron and transferrin saturation were slightly increased and correlated with a two-fold increased liver hepcidin 1 mRNA and a reduced duodenal DcytB mRNA level. Under a normal iron regimen, deleted mice survived for 2 years without visible disadvantage. Mice fed on a high iron diet prior to ferritin H deletion suffered from severe liver damage. Similarly, ferritin H deleted mouse embryonic fibroblasts showed rapid cell death after exposure to iron salt in the medium. This was reversed by wild-type ferritin H but not by a ferritin H mutant lacking ferroxidase activity. Cell death was preceded by an increase in cytoplasmic free iron, reactive oxygen species, and mitochondrial depolarization. Conclusion: Our results provide evidence that the iron storage function of ferritin plays a major role in preventing iron-mediated cell and tissue damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.