There are significant controversies on the antibacterial properties of graphene oxide (GO): GO was reported to be bactericidal in saline, whereas its activity in nutrient broth was controversial. To unveil the mechanisms underlying these contradictions, we performed antibacterial assays under comparable conditions. In saline, bare GO sheets were intrinsically bactericidal, yielding a bacterial survival percentage of <1% at 200 μg/mL. Supplementing saline with ≤10% Luria-Bertani (LB) broth, however, progressively deactivated its bactericidal activity depending on LB-supplementation ratio. Supplementation of 10% LB made GO completely inactive; instead, ∼100-fold bacterial growth was observed. Atomic force microscopy images showed that certain LB components were adsorbed on GO basal planes. Using bovine serum albumin and tryptophan as well-defined model adsorbates, we found that noncovalent adsorption on GO basal planes may account for the deactivation of GO's bactericidal activity. Moreover, this deactivation mechanism was shown to be extrapolatable to GO's cytotoxicity against mammalian cells. Taken together, our observations suggest that bare GO intrinsically kills both bacteria and mammalian cells and noncovalent adsorption on its basal planes may be a global deactivation mechanism for GO's cytotoxicity.
Whereas diverse graphene quantum dots (GQDs) with basal planes similar to those of graphene oxide sheets (i.e., GO-GQDs) lack antibacterial property, that prepared by rupturing C60 cage (i.e., C60-GQD) effectively kills Staphylococcus aureus, including its antibiotic-tolerant persisters, but not Bacillus subtilis, Escherichia coli, or Pseudomonas aeruginosa. The observed activity may correlate with a GQD's ability to disrupt bacterial cell envelop. Surface-Gaussian-curvature match between a GQD and a target bacterium may play critical role in the association of the GQD with bacterial cell surface, the initial step for cell envelope disruption, suggesting the importance of both GQDs' source materials and bacterial shape.
It is found that carbon quantum dots (CQDs) self-assemble to a layer structure at ice crystals-water interface with freeze- drying. Such layers interconnect with each other, forming a free-standing CQD assembly, which has an interlayer distance of about 0.366 nm, due to the existence of curved carbon rings other than hexagons in the assembly. CQDs are fabricated by rupturing C60 by KOH activation with a production yield of ~15 wt.%. The CQDs obtained have an average height of 1.14 nm and an average lateral size of 7.48 nm, and are highly soluble in water. By packaging annealed CQD assembly to high density (1.23 g cm−3) electrodes in supercapacitors, a high volumetric capacitance of 157.4 F cm−3 and a high areal capacitance of 0.66 F cm−2 (normalized to the loading area of electrodes) are demonstrated in 6 M KOH aqueous electrolyte with a good rate capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.