High temperature superconducting (HTS) coils are key parts of many AC applications, such as generators, superconducting magnetic energy storage and transformers. AC loss reduction in HTS coils is essential for the commercialization of these HTS devices. Magnetic material is generally used as the flux diverter in an effort to reduce the AC loss in HTS coils. To achieve the greatest reduction in the AC loss of the coils, the flux diverter should be made of a material with low loss and high saturated magnetic density, and the optimization of the geometric size and location of the flux diverter is required. In this paper, we chose Ni-alloy as the flux diverter, which can be processed into a specific shape and size. The influence of the shape and location of the flux diverter on the AC loss characteristics of stacked (RE)BCO tapes is investigated by use of a finite element method. Taking both the AC loss of the (RE)BCO coils and the ferromagnetic loss of the flux diverter into account, the optimal geometry of the flux diverter is obtained. It is found that when the applied current is at half the value of the critical current, the total loss of the HTS stack with the optimal flux diverter is only 18% of the original loss of the HTS stack without the flux diverter. Besides, the effect of the flux diverter on the critical current of the (RE) BCO stack is investigated.
Although AC transport losses of YBa2Cu3O7−δ (YBCO) coated conductors (CCs) have been studied extensively, the frequency dependence of transport losses still needs more investigations. This paper presents a study on the frequency dependence (in the range of 50–1000 Hz) of the transport losses in YBCO CCs with ferromagnetic substrate and copper stabilizer by the use of both experimental and finite element methods (FEMs). The finite element model (FEM) is based on H-formulation and E-J power law, and calculated AC transport losses accord with the experimental ones. The contributions of ferromagnetic (Ni-5at.%W substrate), eddy current (conventional metal), and hysteresis (superconducting YBCO) losses are extracted. It is shown that the AC transport loss per cycle increases with the frequency due to the growing contribution of eddy current loss. More than 80% of eddy current loss comes from the copper stabilizer adjacent to the ferromagnetic substrate. The influence of magnetic substrate on AC loss is also studied, and it is found that YBCO CCs with non-magnetic substrates are more suitable for high-frequency applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.