Lignocellulose, as the key structural component of plant biomass, is a recalcitrant structure, difficult to degrade. The traditional management of plant waste, including landfill and incineration, usually causes serious environmental pollution and health problems. Interestingly, the xylophagous beetle, Trypoxylus dichotomus, can decompose lignocellulosic biomass. However, the genomics around the digestion mechanism of this beetle remain to be elucidated. Here, we assembled the genome of T. dichotomus, showing that the draft genome size of T. dichotomus is 636.27 Mb, with 95.37% scaffolds anchored onto 10 chromosomes. Phylogenetic results indicated that a divergent evolution between the ancestors of T. dichotomus and the closely related scarabaeid species Onthophagus taurus occurred in the early Cretaceous (120 million years ago). Through gene family evolution analysis, we found 67 rapidly evolving gene families, within which there were 2 digestive gene families (encoding Trypsin and Enoyl-(Acyl carrier protein) reductase) that have experienced significant expansion, indicating that they may contribute to the high degradation efficiency of lignocellulose in T. dichotomus. Additionally, events of chromosome breakage and rearrangement were observed by synteny analysis during the evolution of T. dichotomus due to chromosomes 6 and 8 of T. dichotomus being intersected with chromosomes 2 and 10 of Tribolium castaneum, respectively. Furthermore, the comparative transcriptome analyses of larval guts showed that the digestion-related genes were more commonly expressed in the midgut or mushroom residue group than the hindgut or sawdust group. This study reports the well-assembled and annotated genome of T. dichotomus, providing genomic and transcriptomic bases for further understanding the functional and evolutionary mechanisms of lignocellulose digestion in T. dichotomus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.