Long noncoding RNAs (lncRNAs) have recently emerged as pivotal regulators in governing fundamental biological processes, as well as in tumorigenesis. The nuclear paraspeckle assembly transcript 1 (NEAT1) is one of the most highly regulated lncRNAs in recent genomic datasets, however, its biological role and regulatory mechanism in ovarian cancer (OC) development and progression are poorly defined. In this study, we identified that NEAT1 was up‐regulated in OC patients and cell lines, and its expression was associated with the FIGO stage and lymph node metastasis. Furthermore, the ectopic expression of NEAT1_1 in OVCAR‐3 cell lines promoted cell proliferation and invasion, whereas knockdown of NEAT1_1 did the opposite. Furthermore, NEAT1_1 was stabilized by an RNA‐binding protein HuR, but suppressed by miR‐124‐3p in OC cells. Accordingly, the increased HuR mRNA and decreased miR‐124‐3p levels were observed in OC patients. These results suggested that lncRNA NEAT1, whose expression was collaboratively controlled by HuR and miR‐124‐3p, could regulate ovarian carcinogenesis and may serve as a potential target for antineoplastic therapies.
BackgroundRecent reports support a novel biological phenomenon about cancer related neurogenesis. However, little is known about the clinicopathological significance of neurogenesis in breast cancer.MethodsA total of 196 cases, including 20 of normal tissue, 14 of fibroadenoma, 18 of ductal carcinoma in situ (DCIS) and 144 of invasive ductal carcinoma (IDC) of the breast were used. The tissue slides were immunostained for protein gene product (PGP) 9.5 and S 100 to identify nerves. The correlation between the expression of PGP 9.5 and clinicopathological characteristics in IDC of the breast was assessed.ResultsWhile the PGP 9.5 positive nerve fibers are identified in all cases of normal breast tissue controls and in the tumor stroma of 61% (89/144) cases of invasive ductal carcinomas, PGP 9.5 positive nerve fibers are not seen in the tumor stroma of cases of fibroadenoma and DCIS. The percentage of tumors that exhibited neurogenesis increased from tumor grade I to tumor grade II and III (29.4% vs 71.8%, p < 0.0001). In addition, patients with less than 3 years of disease-free survival tended to have a higher positive expression of PGP 9.5 compared to patients with an equal or more than 3 years of disease-free survival (64.8% vs 46.7%, p = 0.035). Furthermore, moderate/strong expression of PGP 9.5 was found to be significantly related to microvessel density (MVD, p = 0.014). Interestingly, PGP 9.5 expression was significantly associated with higher MVD in the ER-negative (p = 0.045) and node-negative (p = 0.039) subgroups of IDC of the breast.ConclusionsThis data indicates that neurogenesis is associated with some aggressive features of IDC including tumor grade and patient survival as well as angiogenesis, especially in ER-negative and node-negative subtypes of IDC of the breast. Thus, neurogenesis appears to be associated with breast cancer progression and may play a role in therapeutic guidance for patients with ER-negative and node-negative invasive breast cancer.
Bladder inflammation frequently causes cystitis pain and lower urinary tract dysfunction (LUTD) such as urinary frequency and urgency. Although mast cells have been identified to play a critical role in bladder inflammation and pain, the role of mast cells in cystitis-associated LUTD has not been demonstrated. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic and debilitating inflammatory condition of the urinary bladder characterized by the hallmark symptoms of pelvic pain and LUTD. In this study we investigated the role of mast cells in LUTD using a transgenic autoimmune cystitis model (URO-OVA) that reproduces many clinical correlates of IC/BPS. URO-OVA mice express the membrane form of the model antigen ovalbumin (OVA) as a self-antigen on the urothelium and develop bladder inflammation upon introduction of OVA-specific T cells. To investigate the role of mast cells, we crossed URO-OVA mice with mast cell-deficient KitW-sh mice to generate URO-OVA/KitW-sh mice that retained urothelial OVA expression but lacked endogenous mast cells. We compared URO-OVA mice with URO-OVA/KitW-sh mice with and without mast cell reconstitution in response to cystitis induction. URO-OVA mice developed profound bladder inflammation with increased mast cell counts and LUTD, including increased total number of voids, decreased mean volume voided per micturition, and decreased maximum volume voided per micturition, after cystitis induction. In contrast, similarly cystitis-induced URO-OVA/KitW-sh mice developed reduced bladder inflammation with no mast cells and LUTD detected. However, after mast cell reconstitution URO-OVA/KitW-sh mice restored the ability to develop bladder inflammation and LUTD following cystitis induction. We further treated URO-OVA mice with cromolyn, a mast cell membrane stabilizer, and found that cromolyn treatment reversed bladder inflammation and LUTD in the animal model. Our results provide direct evidence for the role of mast cells in cystitis-associated LUTD, supporting the use of mast cell inhibitors for treatment of certain forms of IC/BPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.