Time domain features are employed for detection and identification of rolling element bearing faults in rotating machinery. Only five features with simple calculation are selected as features extracted directly from the original time domain vibration signals or preprocessed time domain vibration components. Three preprocessing techniques including high and band pass filtration, wavelet package transform (WPT) and envelope analysis are researched to achieve time domain features carrying the important diagnostic information of bearing conditions. An optimized artificial neural network (ANN) with rapid learning algorithm is designed and classification is performed using the ANN combined with time domain features. The model was evaluated on vibration data recorded using two accelerometers mounted on an induction motor housing subjected to a number of single point defects. The results demonstrate the proposed model is capable of high precision, fast processing and time savings in identification of bearing faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.