Acetonitrile confined in silica nanopores with surfaces of varying functionality is studied by means of molecular dynamics simulation. The hydrogen-bonding interaction between the surface and the liquid is parametrized by means of first-principles molecular dynamics simulations. It is found that acetonitrile orders into bilayer like structures near the surface, in agreement with prior simulations and experiments. A newly developed method is applied to calculate relevant time correlation functions for molecules in different layers of the pore. This method takes into account the short lifetimes of the molecules in the layers. We compare this method with prior techniques that do not take this lifetime into account and discuss their pitfalls. We show that in agreement with experiment, the dynamics of the system may be described by a two population model that accounts for bulk-like relaxation in the center and frustrated dynamics near the surface of the pore. Specific hydrogen-bonding interactions are found to play a large role in engendering this behavior.
Solar cells incorporating organic–inorganic perovskites, especially methylammonium lead iodide (CH3NH3PbI3), have recently shown remarkable performances and therefore attracted wide interest. For understanding the origin of the high performance, the effective charge carrier masses of CH3NH3PbI3 are critical. However, reliable experimental data on its electronic band structure, which determines the effective mass, is yet to be provided. Here, the electronic structure of CH3NH3PbI3 single crystals is studied by using angle‐resolved photoelectron spectroscopy on cleaved crystal surfaces after characterizing the surface structure by low‐energy electron diffraction. Coexisting cubic and tetragonal phases of CH3NH3PbI3 are found in diffraction patterns. Moreover, a clear band dispersion of the top valence band is observed along directions parallel to different high‐symmetry points of the cubic structure, in consistence with theoretical calculations. Based on these values, the effective hole mass is then estimated to be 0.24(±0.10)m0 around the M point and 0.35(±0.15)m0 around the X point, which are significantly lower than in organic semiconductors. These results reveal the physical origin of the high performance of solar cells incorporating perovskite materials compared to pure organic semiconductors.
We develop and investigate an integral equation connecting the first passage time distribution of a stochastic process in the presence of an absorbing boundary condition and the corresponding Green's function in the absence of the absorbing boundary. Analytical solutions to the integral equations are obtained for three diffusion processes in time-independent potentials which have been previously investigated by other methods. The integral equation provides an alternative way to analytically solve the three diffusion-controlled reactive processes. In order to help analyze biological rupture experiments, we further investigate the numerical solutions of the integral equation for a diffusion process in a time-dependent potential. Our numerical procedure, based on the exact integral equation, avoids the adiabatic approximation used in previous analytical theories and is useful for fitting the rupture force distribution data from single-molecule pulling experiments or molecular dynamics simulation data, especially at larger pulling speeds, larger cantilever spring constants, and smaller reaction rates. Stochastic simulation results confirm the validity of our numerical procedure. We suggest combining a previous analytical theory with our integral equation approach to analyze the kinetics of force induced rupture of biomacromolecules.
The doping mechanism in organic-semiconductor films has been quantitatively studied via ultrahigh-sensitivity ultraviolet photoelectron spectroscopy of N,N-bis(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4,4-diamine (α-NPD) films doped with hexaazatriphenylene-hexacarbonitrile [HAT(CN)6]. We observed that HOMO of α-NPD shifts to the Fermi level (EF) in two different rates with the doping concentration of HAT(CN)6, but HOMO distributions of both pristine and doped amorphous α-NPD films are excellently approximated with a same Gaussian distribution without exponential tail states over ∼5 × 1018 cm−3 eV−1. From the theoretical simulation of the HAT(CN)6-concentration dependence of the HOMO in doped films, we show that the passivation of Gaussian-distributed hole traps, which peak at 1.1 eV above the HOMO onset, occurs at ultralow doping [HAT(CN)6 molecular ratio (MR) < 0.01], leading to a strong HOMO shift of ∼0.40 eV towards EF, and MR dependence of HOMO changes abruptly at MR ∼ 0.01 to a weaker dependence for MR > 0.01 due to future of the dopant acceptor level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.