The fluctuations of agricultural commodity prices have a great impact on people's daily lives as well as the inputs and outputs of agricultural production. An accurate forecast of commodity prices is therefore essential if agricultural authorities are to make scientific decisions. To forecast prices more adaptively, this study proposes a novel model selection framework which includes time series features and forecast horizons. Twenty-nine features are used to depict agricultural commodity prices and three intelligent models are specified as the candidate forecast models; namely, artificial neural network (ANN), support vector regression (SVR), and extreme learning machine (ELM). Both random forest (RF) and support vector machine (SVM) are applied to learn the underlying relationships between the features and the performances of the candidate models. Additionally, a minimum redundancy and maximum relevance approach (MRMR) is employed to reduce feature redundancy and further improve the forecast accuracy. The experimental results demonstrate that, firstly, the proposed model selection framework has a better forecast performance compared with the optimal candidate model and simple model average; secondly, feature reduction is a workable approach to further improve the performance of the model selection framework; and thirdly, for bean and pig grain products, different distributions of the time series features lead to a different selection of the optimal models. INDEX TERMS Model selection, agricultural commodity, price forecasting, time series features, forecast horizons.
This paper proposes an improved ensemble empirical mode decomposition method based on genetic algorithm to solve the mode mixing problem in empirical mode decomposition (EMD) algorithm as well as the parameters selection issue in ensemble empirical mode decomposition (EEMD) algorithm. In a genetic algorithm (GA), the orthogonality index is used to formulate the fitness function and the Hamming distance is specified to design the difference selection operator. By coupling GA with EEMD algorithm, an improved decomposition method with higher efficiency is generated, namely GAEEMD. Simulation experiment with both intermittent signals and sinusoidal signals verifies the effectiveness and robustness of the proposed GAEEMD, compared with EMD, EEMD, and original GA algorithm.
Online search data provide us with a new perspective for quantifying public concern about animal diseases, which can be regarded as a major external shock to price fluctuations. We propose a modeling framework for pork price forecasting that incorporates online search data with support vector regression model. This novel framework involves three main steps: that is, formulation of the animal diseases composite indexes (ADCIs) based on online search data; forecast with the original ADCIs; and forecast improvement with the decomposed ADCIs. Considering that there are some noises within the online search data, four decomposition techniques are introduced: that is, wavelet decomposition, empirical mode decomposition, ensemble empirical mode decomposition, and singular spectrum analysis. The experimental study confirms the superiority of the proposed framework, which improves both the level and directional prediction accuracy. With the SSA method, the noise within the online search data can be removed and the performance of the optimal model is further enhanced.Owing to the long-term effect of diseases outbreak on price volatility, these improvements are more prominent in the mid-and long-term forecast horizons.
Compared with point forecasting, interval forecasting is believed to be more effective and helpful in decision making, as it provides more information about the data generation process. Based on the well-established "linear and nonlinear" modeling framework, a hybrid model is proposed by coupling the vector error correction model (VECM) with artificial intelligence models which consider the cointegration relationship between the lower and upper bounds (Coin-AIs). VECM is first employed to fit the original time series with the residual error series modeled by Coin-AIs. Using pork price as a research sample, the empirical results statistically confirm the superiority of the proposed VECM-CoinAIs over other competing models, which include six single models and six hybrid models. This result suggests that considering the cointegration relationship is a workable direction for improving the forecast performance of the interval-valued time series. Moreover, with a reasonable data transformation process, interval forecasting is proven to be more accurate than point forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.