Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here we evaluated the impact of commonly consumed polyphenols, including green tea catechins and epigallocatechin gallates, resveratrol, and curcumin, on obesity and obesity-related-inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the AMP-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, PPAR gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor kappa B that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass, and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area, and are inconsistent about the anti-obesity impact of dietary polyphenols, probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
The host–guest complexations of HMeQ[7] with a series of alkyldiammonium ions and alkyldiamines have been investigated, indicating that the driving forces strongly depend on the features of the guests.
A new method has been developed to measure fluid-fluid interfacial area during multiple drainages, along with the measurement of hysteretic capillary pressure-saturation (P(c)-S) relationships in unsaturated porous media. The method makes use of an automated device which has been successfully used for rapid measurement of hysteretic P(c)-S relationships, in combination with a novel technique for interfacial area measurement. A pure anionic surfactant, sodium octylbenzene sulfonate (SOBS), is used as a surface-active tracer, and a flow-through UV spectrometer is used to monitor the real-time concentration change of SOBS solution due to adsorption to the fluid-fluid interface during drainage. The Gibbs and Langmuir adsorption equations are applied in combination with a continuous mole balance to calculate interfacial areas. Using this method, air-water interfacial area of a fine sand was measured as a function of capillary pressure and saturation during primary, secondary, and one scanning drainages to explore the influence of drying/wetting history on interfacial area. Results show that 8-20 and 12-22 cm(2)/g more air-water interface was generated in secondary and scanning drainages, respectively, than in primary drainage, with the magnitude of the difference varying as a function of saturation. An advantage of the method is that interfacial tension variations from the method itself are relatively small, typically on the order of 5 mN/m, so measured areas are not skewed by surface-tension-induced changes in interfacial area. In a measurement specifically designed to study the influence of surfactant-induced interfacial tension variations, approximately two times more interfacial area was observed for a 25 mN/m interfacial tension change, in comparison with a system with relatively constant interfacial tension. Implications of results of interfacial area measurements for hysteresis in the three-dimensional relationship between capillary pressure, saturation, and interfacial area are discussed.
Stroke remains a major public health problem worldwide; it causes severe disability and is associated with high mortality rates. However, early diagnosis of stroke is difficult, and no reliable biomarkers are currently established. In this study, mass-spectrometry-based metabolomics was utilized to characterize the metabolic features of the serum of patients with acute ischemic stroke (AIS) to identify novel sensitive biomarkers for diagnosis and progression. First, global metabolic profiling was performed on a training set of 80 human serum samples (40 cases and 40 controls). The metabolic profiling identified significant alterations in a series of 26 metabolites with related metabolic pathways involving amino acid, fatty acid, phospholipid, and choline metabolism. Subsequently, multiple algorithms were run on a test set consisting of 49 serum samples (26 cases and 23 controls) to develop different classifiers for verifying and evaluating potential biomarkers. Finally, a panel of five differential metabolites, including serine, isoleucine, betaine, PC(5:0/5:0), and LysoPE(18:2), exhibited potential to differentiate AIS samples from healthy control samples, with area under the receiver operating characteristic curve values of 0.988 and 0.971 in the training and test sets, respectively. These findings provided insights for the development of new diagnostic tests and therapeutic approaches for AIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.