BackgroundSorafenib, a multi-kinase inhibitor, is used as a standard therapy for advanced hepatocellular carcinoma (HCC). However, complete remission has not been achieved and the molecular basis of HCC resistance to sorafenib remains largely unknown. Previous studies have shown that fibroblast growth factor 19 (FGF19) expression correlates with tumor progression and poor prognosis of HCC. Here, we demonstrate the novel role of FGF19 in HCC resistance to sorafenib therapy.MethodsFGF19 Knockdown cells were achieved by lentiviral-mediated interference, and FGFR4 knockout cells were achieved by CRISPR-Cas9. Protein levels of FGF19, FGFR4 and c-PARP in various HCC cell lines were measured by Western blotting analysis. Cell viability was determined by MTS assay, apoptosis was determined by DAPI nuclear staining and Western blot of c-PRAP, and ROS generation was determined by DCFH-DA staining and electrochemical biosensor.ResultsWe showed that FGF19, when overexpressed, inhibited the effect of sorafenib on ROS generation and apoptosis in HCC. In contrast, loss of FGF19 or its receptor FGFR4 led to a remarkable increase in sorafenib-induced ROS generation and apoptosis. In addition, knockdown of FGF19 in sorafenib-resistant HCC cells significantly enhanced the sensitivity to sorafenib. Importantly, targeting FGF19/FGFR4 axis by ponatinib, a third-generation inhibitor of chronic myeloid leukemia, overcomes HCC resistance of sorafenib by enhancing ROS-associated apoptosis in sorafenib-treated HCC.ConclusionOur results provide the first evidence that inhibition of FGF19/FGFR4 signaling significantly overcomes sorafenib resistance in HCC. Co-treatment of ponatinib and sorafinib may represent an effective therapeutic approach for eradicating HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0478-9) contains supplementary material, which is available to authorized users.
Although several groups have synthesized dual-emission carbon dots (D-CDs) and paid more attention to their emission centers in recent years, the luminescence mechanism of D-CDs is still unclear. Here, we synthesized multiemission CDs via the one-pot hydrothermal method. The prepared CDs exhibit three fluorescence (FL) emissions (370, 425, and 505 nm) under one-wavelength excitation of 320 nm. In addition, various emission origins dominate the unique multiemission property, which is illuminated by means of the radiation decay process, CD internal graphite domains, and abundant functional group characterization. The characterization results fully indicate that there are three energy states: band gap state (carbon-core state), surface defect state, and molecular state. In addition, the peculiar concentration-dependent and polarity-modulated properties further support the explanation of CD multienergy states. Strikingly, the CD FL quantum yield is up to 50.68%. As CDs can show bright green FL excited over 400 nm, the color of concentrated CD solution incredibly turns from maroon to green in visible light observed from different angles. Our findings mainly account for this luminescence mechanism of CDs. This work utilizes time-resolved emission spectra for the first time to distinguish and identify multiemission origins, which would provide scientific inspiration for finding effective ways to regulate or control these luminescence processes.
The tumor microenvironment induces endoplasmic reticulum (ER) stress in tumor cells, an event that can promote progression, but it is unknown how tumor cells adapt to this stress. In this study, we show that the fibroblast growth factor FGF19, a gene frequently amplified in hepatocellular carcinoma (HCC), facilitates a survival response to ER stress. Levels of FGF19 expression were increased in stressed HCC cells in culture and in a mouse xenograft model. Induction of ER stress required the transcription factor ATF4, which directly bound the FGF19 promoter. In cells where ER stress was induced, FGF19 overexpression promoted HCC cell survival and increased resistance to apoptosis, whereas FGF19 silencing counteracted these effects. Mechanistic investigations implicated glycogen synthase kinase-3β (GSK3β) in regulating nuclear accumulation of the stress-regulated transcription factor Nrf2 activated by FGF19. Our findings show how FGF19 provides a cytoprotective role against ER stress by activating a FGFR4-GSK3β-Nrf2 signaling cascade, with implications for targeting this signaling node as a candidate therapeutic regimen for HCC management. .
Background Pancreatic cancer remains one of the most rapidly progressive and deadly malignancies worldwide. Current treatment regimens only result in small improvements in overall survival for patients with this cancer type. CPI-613 (Devimistat), a novel lipoate analog inhibiting mitochondrial metabolism, shows the new hope for pancreatic cancer treatment as an efficient and well-tolerated therapeutic option treated alone or in combination with chemotherapy. Methods Pancreatic cancer cells growing in planar 2D cultures and 3D scaffold were used as research platforms. Cell viability was measured by MTT and alamarBlue, and apoptosis was assessed by JC-1 staining and flow cytometry with Annexin V-FITC/PI staining. The mechanism behind CPI-613 action was analyzed by western blot, transmission electron microscopy, and lipolysis assay kits, in the presence or absence of additional signaling pathway inhibitors or gene modifications. Results CPI-613 exhibits anticancer activity in pancreatic cancer cells by triggering ROS-associated apoptosis, which is accompanied by increased autophagy and repressed lipid metabolism through activating the AMPK signaling. Intriguingly, ACC, the key enzyme modulating lipid metabolism, is identified as a vital target of CPI-613, which is inactivated in an AMPK-dependent manner and influences apoptotic process upon CPI-613. Blockade or enhancement of autophagic process does not increase or blunt apoptosis to CPI-613, but inhibition of the AMPK-ACC signaling significantly attenuates apoptosis induced by CPI-613, suggesting CPI-613-mediated lipid metabolism reduction contributes to its cytotoxicity in pancreatic cancer cells. Conclusions These findings explore the critical role of lipid metabolism in apoptosis, providing new insights into the AMPK-ACC signaling axis in crosstalk between lipid metabolism and apoptosis in CPI-613 treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.