A join order directly affects database query performance and computational overhead. Deep reinforcement learning (DRL) can explore efficient query plans while not exhausting the search space. However, the deep Q network (DQN) suffers from the overestimation of action values in query optimization, which can lead to limited query performance. In addition, ε-greedy exploration is not efficient enough and does not enable deep exploration. Accordingly, in this paper, we propose a dynamic double DQN (DDQN) order selection method(DDOS) for join order optimization. First, the method models the join query as a Markov decision process (MDP), then solves the DRL model by integrating the network model DQN and DDQN weighting into the DRL model’s estimation error problem in query joining, and finally improves the quality of developing query plans. And actions are selected using a dynamic progressive search strategy to improve the randomness and depth of exploration and accumulate a high information gain of exploration. The performance of the proposed method is compared with those of dynamic programming, heuristic algorithms, and DRL optimization methods based on the query set Join Order Benchmark (JOB). The experimental results show that the proposed method can effectively improve the query performance with a favorable generalization ability and robustness, and outperforms other baselines in multi-join query applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.