Nitrogen-doped carbon nanofiber webs (CNFWs) with high surface areas are successfully prepared by carbonization-activation of polypyrrole nanofiber webs with KOH. The as-obtained CNFWs exhibit a superhigh reversible capacity of 943 mAh g(-1) at a current density of 2 A g(-1) even after 600 cycles, which is ascribed to the novel porous nanostructure and high-level nitrogen doping.
For lithium-sulfur batteries, commercial application is hindered by the insulating nature of sulfur and the dissolution of the reaction intermediates of polysulfides. Here, we present an ordered meso-microporous core-shell carbon (MMCS) as a sulfur container, which combines the advantages of both mesoporous and microporous carbon. With large pore volume and highly ordered porous structure, the "core" promises a sufficient sulfur loading and a high utilization of the active material, while the "shell" containing microporous carbon and smaller sulfur acts as a physical barrier and stabilizes the cycle capability of the entire S/C composite. Such a S/MMCS composite exhibits a capacity as high as 837 mAh g(-1) at 0.5 C after 200 cycles with a capacity retention of 80% vs the second cycle (a decay of only 0.1% per cycle), demonstrating that the diffusion of the polysulfides into the bulk electrolyte can be greatly reduced. We believe that the tailored highly ordered meso-microporous core-shell structured carbon can also be applicable for designing some other electrode materials for energy storage.
In lithium‐sulfur batteries, small S2–4 molecules show very different electrochemical responses from the traditional S8 material. Their exact lithiation/delitiation mechanism is not clear and how to select proper electrolytes for the S2–4 cathodes is also ambiguous. Here, S2–4 and S8/S2–4 composites with highly ordered microporous carbon as a confining matrix are fabricated and the electrode mechanism of the S2–4 cathode is investigated by comparing the electrochemical performances of the S2–4 and S2–4/S8 electrodes in various electrolytes combined with theoretical calculation. Experimental results show that the electrolyte and microstructure of carbon matrix play important roles in the electrochemical performance. If the micropores of carbon are small enough to prevent the penetration of the solvent molecules, the lithiation/delithiation for S2–4 occurs as a solid‐solid process. The irreversible chemically reactions between the polysulfudes and carbonates, and the dissolution of the polysulfides into the ethers can be effectively avoided due to the steric hindrance. The confined S2–4 show high adaptability to the electrolytes. The sulfur cathode based on this strategy exhibits excellent rate capability and cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.