An epidemic model with time delay has been proposed and analyzed. In this model the effect of awareness programs driven by media on the prevalence of an infectious disease is studied. It is assumed that pathogens are transmitted via direct contact between the susceptible and the infective populations and further assumed that the growth rate of cumulative density of awareness programs increases at a rate proportional to the infective population. The model is analyzed by using stability theory of differential equations and numerical simulations. Both equilibria have been proved to be globally asymptotically stable. The results we obtained and numerical simulations suggest the increasing of the dissemination rate and implementation rate can reduce the proportion of the infective population.
A compartment epidemic model with delay is given to discuss the impact of awareness programs on the spread and control of infectious diseases in a given region. It is assumed that there is a constant recruitment rate in the cumulative density of awareness programs, and further it is assumed that awareness programs can influence the susceptible to a limited extent. The system exhibits two equilibria: the disease-free equilibrium is stable if the basic reproduction number is less than unity for any delay and the unique endemic equilibrium exhibits Hopf-bifurcation under certain conditions. Numerical simulations prove the results of analysis and the significance of awareness programs in preventing and controlling the diseases, by investigating the relationship between the proportion of the infective and the dissemination rate and the implementation rate, respectively.
An epidemic model with media is proposed to describe the spread of infectious diseases in a given region. A piecewise continuous transmission rate is introduced to describe that the media has its effect when the number of the infected exceeds a certain critical level. Furthermore, it is assumed that the impact of the media on the contact transmission is described by an exponential function.Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. On the other hand, when the basic reproduction number is greater than unity, a unique endemic equilibrium exists, which is also globally asymptotically stable. Our analysis implies that media coverage plays an important role in controlling the spread of the disease.
Hindawi Publishing Corporation
A three-dimensional compartmental model with media coverage is proposed to describe the real characteristics of its impact in the spread of infectious diseases in a given region. A piecewise continuous transmission rate is introduced to describe that media coverage exhibits its effect only when the number of the infected exceeds a certain critical level. Further, it is assumed that the impact of media coverage on the contact transmission is described by an exponential decreasing factor. Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. On the other hand, when the basic reproduction number is greater than unity and media coverage impact is sufficiently small, a unique endemic equilibrium exists, which is globally asymptotically stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.