Key Points
Purification of staged human erythroblasts should facilitate a comprehensive cellular and molecular characterization of these cell populations. Quantification of human terminal erythropoiesis in vivo provides a powerful means for studying impaired erythropoiesis in human diseases.
Dietary supplementation of glutamine prevents intestinal dysfunction and atrophy in weanling piglets, but the underlying mechanism(s) are largely unknown. This study was conducted to test the hypothesis that weaning or glutamine may modulate expression of genes that are crucial for intestinal metabolism and function. In Expt. 1, we obtained small intestine from 28-d-old pigs weaned at 21 d of age and from age-matched suckling piglets. In Expt. 2, piglets were weaned at 21 d of age and then had free access to diets supplemented with 1% L-glutamine (wt:wt) or isonitrogenous L-alanine (control). At d 28, we collected small intestine for biochemical and morphological measurements and microarray analysis of gene expression using the Operon Porcine Genome Oligo set. Early weaning resulted in increased (52-346%) expression of genes related to oxidative stress and immune activation but decreased (35-77%) expression of genes related to macronutrient metabolism and cell proliferation in the gut. Dietary glutamine supplementation increased intestinal expression (120-124%) of genes that are necessary for cell growth and removal of oxidants, while reducing (34-75%) expression of genes that promote oxidative stress and immune activation. Functionally, the glutamine treatment enhanced intestinal oxidative-defense capacity (indicated by a 29% increase in glutathione concentration), prevented jejunal atrophy, and promoted small intestine growth (+12%) and body weight gain (+19%) in weaned piglets. These findings reveal coordinate alterations of gene expression in response to weaning and aid in providing molecular mechanisms for the beneficial effect of dietary glutamine supplementation to improve nutrition status in young mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.