In the automatic speech recognition (ASR) system, how to solve the problem of code-switch speech recognition has been a concern. Code-switch speech recognition is challenging due to data scarcity as well as diverse syntactic structures across languages. In this paper, we focus on the code-switch speech recognition in mainland China, which is obviously different from the Hong Kong and Southeast Asia area in linguistic characteristics. We propose a novel approach that only uses monolingual data for code-switch second-pass speech recognition which is also named language model rescoring. The approach converts the code-switch sentence to a monolingual sentence by a word mapping and language model determination step, therefore the issue of data scarcity is unnecessary to be considered. The word pairs during the word mapping step are generated by a fine-designed generation process that incorporates machine translation, word alignment, etc. We show that the proposed approach achieves an over 7.23% relative WER reduction from the naive monolingual language model (MLM) rescoring in our test set.
Self-supervised learning (SSL) models confront challenges of abrupt informational collapse or slow dimensional collapse. We propose TriNet, which introduces a novel triple-branch architecture for preventing collapse and stabilizing the pretraining. TriNet learns the SSL latent embedding space and incorporates it to a higher level space for predicting pseudo target vectors generated by a frozen teacher. Our experimental results show that the proposed method notably stabilizes and accelerates pre-training and achieves a relative word error rate reduction (WERR) of 6.06% compared to the state-ofthe-art (SOTA) Data2vec for a downstream benchmark ASR task. We will release our code at https://github.com/ tencent-ailab/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.