In this paper, we develop a new family of graph kernels where the graph structure is probed by means of a discrete-time quantum walk. Given a pair of graphs, we let a quantum walk evolve on each graph and compute a density matrix with each walk. With the density matrices for the pair of graphs to hand, the kernel between the graphs is defined as the negative exponential of the quantum Jensen-Shannon divergence between their density matrices. In order to cope with large graph structures, we propose to construct a sparser version of the original graphs using the simplification method introduced in Qiu and Hancock (2007). To this end, we compute the minimum spanning tree over the commute time matrix of a graph. This spanning tree representation minimizes the number of edges of the original graph while preserving most of its structural information. The kernel between two graphs is then computed on their respective minimum spanning trees. We evaluate the performance of the proposed kernels on several standard graph datasets and we demonstrate their effectiveness and efficiency.
In this paper, we develop a novel Backtrackless Aligned-Spatial Graph Convolutional Network (BASGCN) model to learn effective features for graph classification. Our idea is to transform arbitrary-sized graphs into fixed-sized backtrackless aligned grid structures and define a new spatial graph convolution operation associated with the grid structures. We show that the proposed BASGCN model not only reduces the problems of information loss and imprecise information representation arising in existing spatially-based Graph Convolutional Network (GCN) models, but also bridges the theoretical gap between traditional Convolutional Neural Network (CNN) models and spatially-based GCN models. Furthermore, the proposed BASGCN model can both adaptively discriminate the importance between specified vertices during the convolution process and reduce the notorious tottering problem of existing spatially-based GCNs related to the Weisfeiler-Lehman algorithm, explaining the effectiveness of the proposed model. Experiments on standard graph datasets demonstrate the effectiveness of the proposed model.
Feature selection can efficiently identify the most informative features with respect to the target feature used in training. However, state-of-the-art vector-based methods are unable to encapsulate the relationships between feature samples into the feature selection process, thus leading to significant information loss. To address this problem, we propose a new graph-based structurally interacting elastic net method for feature selection. Specifically, we commence by constructing feature graphs that can incorporate pairwise relationship between samples. With the feature graphs to hand, we propose a new information theoretic criterion to measure the joint relevance of different pairwise feature combinations with respect to the target feature graph representation. This measure is used to obtain a structural interaction matrix where the elements represent the proposed information theoretic measure between feature pairs. We then formulate a new optimization model through the combination of the structural interaction matrix and an elastic net regression model for the feature subset selection problem. This allows us to a) preserve the information of the original vectorial space, b) remedy the information loss of the original feature space caused by using graph representation, and c) promote a sparse solution and also encourage correlated features to be selected. Because the proposed optimization problem is non-convex, we develop an efficient alternating direction multiplier method (ADMM) to locate the optimal solutions. Extensive experiments on various datasets demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.