Ceramics typically have very high hardness, but suffer from poor toughness. Here, we use graphene to enhance the toughness of bulk boron carbide ceramics. The reduced graphene oxide (rGO) platelets are homogenously dispersed with boron carbide particles after sintering at 1350°C, under high pressure of 4.5 GPa with a multi-anvil apparatus. Fracture toughness of the composites is increased~131% (from~3.79 tõ 8.76 MPaÁm 1/2 ) at 1.5 vol% rGO platelets as a result of a toughing effect of graphene along with a little sacrificing of the hardness and elastic modulus, compared with those of pure boron carbide. The remarkably enhanced fracture toughness in the boron carbide ceramics is associated with graphene sheets crack bridging and graphene interface sliding effect. This study holds much significance for the understanding and development of high-performance graphene reinforcing ceramics.
Traditionally, densification and grain growth are two competing processes in sintering of ceramics. To improve the density, while limiting grain growth at the same time, an ultrahigh pressure (>1 GPa) is employed here and results in plastic deformation as the dominant densification mechanism during the sintering process. In this way, fully dense boron carbide (B4C) structural ceramics without grain growth is prepared under the pressure of 4.5 GPa at low temperature of 1300°C in 5 minutes, while showing excellent mechanical properties such as Vickers hardness of 38.04 GPa, Young's modulus of 487.7 GPa, and fracture toughness of 3.87 MPa·m1/2. This study should also facilitate the development of other structural ceramics for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.