This paper is concerned with open-domain question answering (i.e., OpenQA). Recently, some works have viewed this problem as a reading comprehension (RC) task, and directly applied successful RC models to it. However, the performances of such models are not so good as that in the RC task. In our opinion, the perspective of RC ignores three characteristics in OpenQA task: 1) many paragraphs without the answer span are included in the data collection; 2) multiple answer spans may exist within one given paragraph; 3) the end position of an answer span is dependent with the start position. In this paper, we first propose a new probabilistic formulation of OpenQA, based on a three-level hierarchical structure, i.e., the question level, the paragraph level and the answer span level. Then a Hierarchical Answer Spans Model (HAS-QA) is designed to capture each probability. HAS-QA has the ability to tackle the above three problems, and experiments on public OpenQA datasets show that it significantly outperforms traditional RC baselines and recent OpenQA baselines.
Machine reading comprehension (MRC) has become a core component in a variety of natural language processing (NLP) applications such as question answering and dialogue systems. It becomes a practical challenge that an MRC model needs to learn in non-stationary environments, in which the underlying data distribution changes over time. A typical scenario is the domain drift, i.e. different domains of data come one after another, where the MRC model is required to adapt to the new domain while maintaining previously learned ability. To tackle such a challenge, in this work, we introduce the Continual Domain Adaptation (CDA) task for MRC. So far as we know, this is the first study on the continual learning perspective of MRC. We build two benchmark datasets for the CDA task, by reorganizing existing MRC collections into different domains with respect to context type and question type, respectively. We then analyze and observe the catastrophic forgetting (CF) phenomenon of MRC under the CDA setting. To tackle the CDA task, we propose several BERT-based continual learning MRC models using either regularization-based methodology or dynamic-architecture paradigm. We analyze the performance of different continual learning MRC models under the CDA task and show that the proposed dynamic-architecture based model achieves the best performance. CCS CONCEPTS • Information systems → Question answering.
Web question answering (QA) has become an indispensable component in modern search systems, which can significantly improve users' search experience by providing a direct answer to users' information need. This could be achieved by applying machine reading comprehension (MRC) models over the retrieved passages to extract answers with respect to the search query. With the development of deep learning techniques, state-of-the-art MRC performances have been achieved by recent deep methods. However, existing studies on MRC seldom address the predictive uncertainty issue, i.e., how likely the prediction of an MRC model is wrong, leading to uncontrollable risks in real-world Web QA applications. In this work, we first conduct an in-depth investigation over the risk of Web QA. We then introduce a novel risk control framework, which consists of a qualify model for uncertainty estimation using the probe idea, and a decision model for selectively output. For evaluation, we introduce risk-related metrics, rather than the traditional EM and F1 in MRC, for the evaluation of risk-aware Web QA. The empirical results over both the real-world Web QA dataset and the academic MRC benchmark collection demonstrate the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.