In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contraction, and shrink parameters depend on the dimension of the optimization problem.Our numerical experiments show that the new implementation outperforms the standard Nelder-Mead method for high dimensional problems.
AMS classification: 15A48 47H07 47H09 47H10 Keywords: Perron-Frobenius theorem for nonnegative tensors Convergence of the power algorithmWe prove an analog of Perron-Frobenius theorem for multilinear forms with nonnegative coefficients, and more generally, for polynomial maps with nonnegative coefficients. We determine the geometric convergence rate of the power algorithm to the unique normalized eigenvector.
We introduce the concept of mode-k generalized eigenvalues and eigenvectors of a tensor and prove some properties of such eigenpairs. In particular, we derive an upper bound for the number of equivalence classes of generalized tensor eigenpairs using mixed volume. Based on this bound and the structures of tensor eigenvalue problems, we propose two homotopy continuation type algorithms to solve tensor eigenproblems. With proper implementation, these methods can find all equivalence classes of isolated generalized eigenpairs and some generalized eigenpairs contained in the positive dimensional components (if there are any). We also introduce an algorithm that combines a heuristic approach and a Newton homotopy method to extract real generalized eigenpairs from the found complex generalized eigenpairs. A MATLAB software package TenEig has been developed to implement these methods. Numerical results are presented to illustrate the effectiveness and efficiency of TenEig for computing complex or real generalized eigenpairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.