Recent advances in spatial transcriptomics (ST) have brought unprecedented opportunities to understand tissue organization and function in spatial context. However, it is still challenging to precisely dissect spatial domains with similar gene expression and histology in situ. Here, we present DeepST, an accurate and universal deep learning framework to identify spatial domains, which performs better than the existing state-of-the-art methods on benchmarking datasets of the human dorsolateral prefrontal cortex. Further testing on a breast cancer ST dataset, we showed that DeepST can dissect spatial domains in cancer tissue at a finer scale. Moreover, DeepST can achieve not only effective batch integration of ST data generated from multiple batches or different technologies, but also expandable capabilities for processing other spatial omics data. Together, our results demonstrate that DeepST has the exceptional capacity for identifying spatial domains, making it a desirable tool to gain novel insights from ST studies.
The world is facing a pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Adaptive immune responses are essential for SARS-CoV-2 virus clearance. Although a large body of studies have been conducted to investigate the immune mechanism in COVID-19 patients, we still lack a comprehensive understanding of the BCR repertoire in patients. In this study, we used the single-cell V(D)J sequencing to characterize the BCR repertoire across convalescent COVID-19 patients. We observed that the BCR diversity was significantly reduced in disease compared with healthy controls. And BCRs tend to skew toward different V gene segments in COVID-19 and healthy controls. The CDR3 sequences of heavy chain in clonal BCRs in patients were more convergent than that in healthy controls. In addition, we discovered increased IgG and IgA isotypes in the disease, including IgG1, IgG3 and IgA1. In all clonal BCRs, IgG isotypes had the most frequent class switch recombination events and the highest somatic hypermutation rate, especially IgG3. Moreover, we found that an IgG3 cluster from different clonal groups had the same IGHV, IGHJ and CDR3 sequences (IGHV4-4-CARLANTNQFYDSSSYLNAMDVW-IGHJ6). Overall, our study provides a comprehensive characterization of the BCR repertoire in COVID-19 patients, which contributes to the understanding of the mechanism for the immune response to SARS-CoV-2 infection.
Messenger RNA (mRNA) vaccines have shown great potential for anti-tumor therapy due to the advantages in safety, efficacy and industrial production. However, it remains a challenge to identify suitable cancer neoantigens that can be targeted for mRNA vaccines. Abnormal alternative splicing occurs in a variety of tumors, which may result in the translation of abnormal transcripts into tumor-specific proteins. High-throughput technologies make it possible for systematic characterization of alternative splicing as a source of suitable target neoantigens for mRNA vaccine development. Here, we summarized difficulties and challenges for identifying alternative splicing-derived cancer neoantigens from RNA-seq data and proposed a conceptual framework for designing personalized mRNA vaccines based on alternative splicing-derived cancer neoantigens. In addition, several points were presented to spark further discussion toward improving the identification of alternative splicing-derived cancer neoantigens.
Backgroud Cancer stemness is associated with metastases in kidney renal clear cell carcinoma (KIRC) and negatively correlates with immune infiltrates. Recent stemness evaluation methods based on the absolute expression have been proposed to reveal the relationship between stemness and cancer. However, we found that existing methods do not perform well in assessing the stemness of KIRC patients, and they overlooked the impact of alternative splicing. Alternative splicing not only progresses during the differentiation of stem cells, but also changes during the acquisition of the stemness features of cancer stem cells. There is an urgent need for a new method to predict KIRC-specific stemness more accurately, so as to provide help in selecting treatment options. Methods The corresponding RNA-Seq data were obtained from the The Cancer Genome Atlas (TCGA) data portal. We also downloaded stem cell RNA sequence data from the Progenitor Cell Biology Consortium (PCBC) Synapse Portal. Independent validation sets with large sample size and common clinic pathological characteristics were obtained from the Gene Expression Omnibus (GEO) database. we constructed a KIRC-specific stemness prediction model using an algorithm called one-class logistic regression based on the expression and alternative splicing data to predict stemness indices of KIRC patients, and the model was externally validated. We identify stemness-associated alternative splicing events (SASEs) by analyzing different alternative splicing event between high- and low- stemness groups. Univariate Cox and multivariable logistic regression analysisw as carried out to detect the prognosis-related SASEs respectively. The area under curve (AUC) of receiver operating characteristic (ROC) was performed to evaluate the predictive values of our model. Results Here, we constructed a KIRC-specific stemness prediction model with an AUC of 0.968,and to provide a user-friendly interface of our model for KIRC stemness analysis, we have developed KIRC Stemness Calculator and Visualization (KSCV), hosted on the Shiny server, can most easily be accessed via web browser and the url https://jiang-lab.shinyapps.io/kscv/. When applied to 605 KIRC patients, our stemness indices had a higher correlation with the gender, smoking history and metastasis of the patients than the previous stemness indices, and revealed intratumor heterogeneity at the stemness level. We identified 77 novel SASEs by dividing patients into high- and low- stemness groups with significantly different outcome and they had significant correlations with expression of 17 experimentally validated splicing factors. Both univariate and multivariate survival analysis demonstrated that SASEs closely correlated with the overall survival of patients. Conclusions Basing on the stemness indices, we found that not only immune infiltration but also alternative splicing events showed significant different at the stemness level. More importantly, we highlight the critical role of these differential alternative splicing events in poor prognosis, and we believe in the potential for their further translation into targets for immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.