The emergent properties that arise from self-assembly and molecular recognition phenomena are a direct consequence of non-covalent interactions. Gas-phase measurements and computational methods point to the dominance of dispersion forces in molecular association, but solvent effects complicate the unambiguous quantification of these forces in solution. Here, we have used synthetic molecular balances to measure interactions between apolar alkyl chains in 31 organic, fluorous and aqueous solvent environments. The experimental interaction energies are an order of magnitude smaller than estimates of dispersion forces between alkyl chains that have been derived from vaporization enthalpies and dispersion-corrected calculations. Instead, it was found that cohesive solvent-solvent interactions are the major driving force behind apolar association in solution. The results suggest that theoretical models that implicate important roles for dispersion forces in molecular recognition events should be interpreted with caution in solvent-accessible systems.
The hydrophobic effect plays a central role in determining the structure, activity, and properties of biomolecules and materials. In contrast, the general manifestation of this phenomenon in other solvents—the solvophobic effect—although widely invoked, is currently poorly defined because of the lack of a universally accepted descriptor. Here we have used synthetic molecular balances to measure solvent effects on aromatic, aliphatic, and fluorous nonpolar interactions. Our solvent screening data combined with independent experimental measurements of supramolecular association, single-molecule folding, and bulk phase transfer energies were all found to correlate well with the cohesive energy density (ced) of the solvent. Meanwhile, other measures of solvent cohesion, such as surface tension and internal pressure, gave inferior correlations. Thus, we establish ced as a readily accessible, quantitative descriptor of solvophobic association in a range of chemical contexts.
Fluorocarbons often have distinct miscibility properties compared to their nonfluorinated analogues. These differences may be attributed to van der Waals dispersion forces or solvophobic effects, but their contributions are notoriously difficult to separate in molecular recognition processes. Here, molecular torsion balances were used to compare cohesive alkyl and perfluoroalkyl interactions in a range of solvents. A simple linear regression enabled the energetic partitioning of solvophobic and van der Waals forces in the self-association of apolar chains. The contributions of dispersion interactions in apolar cohesion were found to be strongly attenuated in solution compared to the gas phase, but still play a major role in fluorous and organic solvents. In contrast, solvophobic effects were found to be dominant in driving the association of apolar chains in aqueous solution. The results are expected to assist the computational modelling of van der Waals forces in solution.
Experimental support for the dominance of van der Waals dispersion forces in aromatic stacking interactions occurring in organic solution is surprisingly limited. The size-dependence of aromatic stacking in an organic solvent was examined. The interaction energy was found to vary by about 7.5 kJ mol(-1) on going from a phenyl-phenyl to an anthracene-pyrene stack. Strikingly, the experimental data were highly correlated with dispersion energies determined using symmetry-adapted perturbation theory (SAPT), while the induction, exchange, electrostatic, and solvation energy components correlated poorly. Both the experimental data and the SAPT-dispersion energies gave high-quality correlations with the change in solvent accessible area upon complexation. Thus, the size-dependence of aromatic stacking interactions is consistent with the dominance of van der Waals dispersion forces even in the presence of a competing polarizable solvent.
The limited stability of the surface of black phosphorus (BP) under atmospheric conditions is a significant constraint on the exploitation of this layered material and its few layer analogue, phosphorene, as an optoelectronic material. Here we show that supramolecular networks stabilised by hydrogen bonding can be formed on BP, and that these monolayer-thick films can passivate the BP surface and inhibit oxidation under ambient conditions. The supramolecular layers are formed by solution deposition and we use atomic force microscopy to obtain images of the BP surface and hexagonal supramolecular networks of trimesic acid and melamine cyanurate (CA.M) under ambient conditions. The CA.M network is aligned with rows of phosphorus atoms and forms large domains which passivate the BP surface for more than a month, and also provides a stable supramolecular platform for the sequential deposition of 1,2,4,5-tetrakis(4-carboxyphenyl)benzene to form supramolecular heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.