Natural products containing eight-membered carbocycles constitute a class of structurally intriguing and biologically important molecules such as the famous diterpenes taxol and vinigrol. Such natural products are being increasingly investigated because of their fascinating architectural features and potent medicinal properties. However, synthesis of natural products with cyclooctane moieties has proved to be highly challenging. This review highlights the recently completed total syntheses of natural products with eight-membered carbocycles with a focus on strategic considerations. A collection of 27 representative studies from the literature covering the decade from 2009 to 2019 is described in chronological order with relevant studies grouped together, including syntheses of the same natural product by different research groups using different strategies. Finally, a summary and outlook including a discussion of the major features of each strategy used in the syntheses are presented. This review illustrates the diversity and creativity in the elegant synthetic designs of eight-membered carbocycles. We hope this review will provide timely illumination and beneficial guidance for future synthetic efforts for organic chemists who are interested in this area.
Astrocytes respond to and regulate neuronal activity, yet their role in mammalian behavior remains incompletely understood. Especially unclear is whether, and if so how, astrocyte activity regulates contextual fear memory, the dysregulation of which leads to pathological fear-related disorders. We generated GFAP-ChR2-EYFP rats to allow the specific activation of astrocytes in vivo by optogenetics. We found that after memory acquisition within a temporal window, astrocyte activation disrupted memory consolidation and persistently decreased contextual but not cued fear memory accompanied by reduced fear-related anxiety behavior. In vivo microdialysis experiments showed astrocyte photoactivation increased extracellular ATP and adenosine concentrations. Intracerebral blockade of adenosine A1 receptors (A1Rs) reversed the attenuation of fear memory. Furthermore, intracerebral or intraperitoneal injection of A1R agonist mimicked the effects of astrocyte activation. Therefore, our findings provide a deeper understanding of the astrocyte-mediated regulation of fear memory, and suggest a new and important therapeutic strategy against pathological fear-related disorders.
CD200 is a cell surface glycoprotein that has been implicated in a variety of human cancer cells. It has been proposed as a cancer stem cell (CSC) marker in colon cancer and is closely related to tumor immunosuppression. However, there is little functional data supporting its role as a true CSC marker, and the mechanism by which CD200 contributes to colorectal cancer has not been elucidated. In the present study, CD200+ and CD200- COLO 205 colorectal cancer cells were sorted out by flow cytometry, and colonosphere formation and Transwell migration assays were performed. Affymetrix Human U133 Plus2.0 arrays were used to screen the gene expression profiles of CD200+ and CD200- colorectal cancer cells. The results suggest that there are differentially expressed genes between the two subpopulations, including several important genes that function in cell proliferation, metastasis, apoptosis and the immune response. Pathway analysis revealed that the Wnt, MAPK and calcium signaling pathways were differentially expressed between CD200+ and CD200- cells. Moreover, several key genes upregulated in CD200+ cells were also highly overexpressed in CD44+CD133+ colorectal stem cells compared to the CD44-CD133- fraction of the same cell line. In the present study, we showed for the first time a correlation between CD200 expression and the Wnt signaling pathway in colon cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.