We report the nontrivial topological states in an intrinsic type-II superconductor BaSn
5
(T
c ∼ 4.4 K) probed by measuring the magnetization, specific heat, de Haas–van Alphen (dHvA) effect, and by performing first-principles calculations. The first-principles calculations reveal a topological nodal ring structure centered at the H point in the k
z = π plane of the Brillouin zone, which could be gapped by spin-orbit coupling (SOC), yielding relatively small gaps below and above the Fermi level of about 0.04 eV and 0.14 eV, respectively. The SOC also results in a pair of Dirac points along the Γ–A direction, located at ∼ 0.2 eV above the Fermi level. The analysis of the dHvA quantum oscillations supports the calculations by revealing a nontrivial Berry phase originating from the hole and electron pockets related to the bands forming the Dirac cones. Thus, our study provides an excellent avenue for investigating the interplay between superconductivity and nontrivial topological states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.