Salinization in arid or semiarid regions with water logging limits cropland yield, threatening food security. The highest level of farmland salinization, that is, abandoned salinized farmland, is a tradeoff between inadequate drainage facilities and sustainable farming. The evolution of abandoned salinized farmlands is closely related to the development of cropping systems. However, detecting abandoned salinized farmland using time-series remote sensing data has not been investigated well by previous studies. In this study, a novel approach was proposed to detect the dynamics of abandoned salinized farmland using time-series multispectral and thermal imagery. Thirty-two years of temporal Landsat imagery (from 1988 to 2019) was used to assess the evolution of salinization in Hetao, a two-thousand-year-old irrigation district in northern China. As intermediate variables of the proposed method, the crop-specific planting area was retrieved via its unique temporal vegetation index (VI) pattern, in which the shape-model-fitting technology and the K-means cluster algorithm were used. The desert area was stripped from the clustered non-vegetative area using its distinct features in the thermal band. Subsequently, the abandoned salinized farmland was distinguished from the urban area by the threshold-based saline index (SI). In addition, a regression model between electrical conductance (EC) and SI was established, and the spatial saline degree was evaluated by the SI map in uncropped and unfrozen seasons. The results show that the cropland has constantly been expanding in recent decades (from 4.7 × 105 ha to 7.1 × 105 ha), while the planting area of maize and sunflower has grown and the area of wheat has decreased. Significant desalinization progress was observed in Hetao, where both the area of salt-affected land (salt-free area increased approximately 4 × 105 ha) and the abandoned salinized farmland decreased (reduced from 0.45 × 105 ha to 0.19 × 105 ha). This could be mainly attributed to three reasons: the popularization of water-saving irrigation technology, the construction of artificial drainage facilities, and a shift in cropping patterns. The decrease in irrigation and the increase in drainage have deepened the groundwater table in Hetao, which weakens the salt collection capacity of the abandoned salinized farmland. The results demonstrate the promising possibility of reutilizing abandoned salinized farmland via a leaching campaign where the groundwater table is sufficiently deep to stop salinization.
Fallows are widespread in dryland cropping systems. However, timely information about their spatial extent and location remains scarce. To overcome this lack of information, we propose to classify fractional cover data from Sentinel-2 with biased support vector machines. Fractional cover images describe the land surface in intuitive, biophysical terms, which reduces the spectral variability within the fallow class. Biased support vector machines are a type of one-class classifiers that require labelled data for the class of interest and unlabelled data for the other classes. They allow us to extrapolate in-situ observations collected during flowering to the rest of the growing season to generate large training data sets, thereby reducing the data collection requirements. We tested this approach to monitor fallows in the northern grains region of Australia and showed that the seasonal fallow extent can be mapped with >92% accuracy both during the summer and winter seasons. The summer fallow extent can be accurately mapped as early as mid-December (1-4 months before harvest). The winter fallow extent can be accurately mapped from mid-August (2-4 months before harvest). Our method also detected emergence dates successfully, indicating the near real-time accuracy of our method. We estimated that the extent of fallow fields across the northern grains region of Australia ranged between 50% in winter 2017 and 85% in winter 2019. Our method is scalable, sensor independent and economical to run. As such, it lays the foundations for reconstructing and monitoring the cropping dynamics in Australia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.