Chemotherapy for aggressive non-small-cell lung cancer (NSCLC) usually results in a poor prognosis due to tumor metastasis, vasculogenic mimicry (VM) channels, limited killing of tumor cells, and severe systemic toxicity. Herein, we developed a kind of multifunctional targeting epirubicin liposomes to enhance antitumor efficacy for NSCLC. In the liposomes, octreotide was modified on liposomal surface for obtaining a receptor-mediated targeting effect, and honokiol was incorporated into the lipid bilayer for inhibiting tumor metastasis and eliminating VM channels. In vitro cellular assays showed that multifunctional targeting epirubicin liposomes not only exhibited the strongest cytotoxic effect on Lewis lung tumor cells but also showed the most efficient inhibition on VM channels. Action mechanism studies showed that multifunctional targeting epirubicin liposomes could downregulate PI3K, MMP-2, MMP-9, VE-Cadherin, and FAK and activate apoptotic enzyme caspase 3. In vivo results exhibited that multifunctional targeting epirubicin liposomes could accumulate selectively in tumor site and display an obvious antitumor efficacy. In addition, no significant toxicity of blood system and major organs was observed at a test dose. Therefore, multifunctional targeting epirubicin liposomes may provide a safe and efficient therapy strategy for NSCLC.
The goal of this evaluation was to examine the mechanisms of Shenqi Fuzheng injection (SFI), an extract made from the plants Radix Astragali and Radix Codonopsis, in the process of chemotherapy sensitivity in non-small-cell lung cancer (NSCLC) cells. We investigated the expression of mitofusin-2 (Mfn2), a mitochondrial GTPase that may be related to chemoresistance, and found that Mfn2 expression was lower in human cisplatin-resistant lung carcinoma A549/DDP cells than in cisplatin-susceptible A549 cells. Chemosensitivity to cisplatin was restored in A549/DDP cells following supplementation in conjunction with SFI treatment, the effect of which we evaluated via cell cycle, apoptosis, and cell signaling analysis. We found that the combined use of A549/DDP cells with SFI and cisplatin enhanced cell cycle arrested in the G2/M phase, which was accompanied by upregulation of p53 and p21 protein expression and induced mitochondrial apoptosis in conjunction with the upregulation of Bax and the downregulation of Bcl-2 protein expression. Moreover, cell cycle arrest and mitochondrial apoptosis coincided with the upregulation of Mfn2 expression, which, in turn, was related to the increased mitochondrial membrane permeabilization and elevated reactive oxygen species. In summary, our findings suggest that the effect of SFI in increasing chemotherapy sensitivity in cisplatin resistance of NSCLCs occurs through cell cycle arrest and the initiation of mitochondrial apoptosis involved in the upregulation of Mfn2 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.