Thermodynamic parameters derived from optical melting studies are reported for duplex formation by a series of oligoribonucleotides containing G.U mismatches. The results are used to determine nearest-neighbor parameters for helix propagation by G.U mismatches. Surprisingly, the [formula; see text] nearest-neighbor free energy increment in unfavorable in the contexts [formula; see text], and [formula; see text] but favorable in the context [formula; see text]. This is a non-nearest-neighbor effect. In contrast, the [formula; see text] free energy increment is favorable and independent of context. Circular dichroism and imino proton NMR spectra of several sequences do not reveal an obvious structural basis for this dichotomy. For example, all the G.U mismatches have two slowly exchanging imino protons. The imino resonances for the G.U mismatches in GGAGUUCC, GUCGUGAC, and CCUGUAGG, however, broaden at lower temperature than the imino resonances for the interior Watson-Crick base pairs. In contrast, the imino resonances for the G.U mismatches in GGAUGUCC remain sharp at high temperature. The improved parameters for G.U mismatches should improve predictions of RNA structure from sequence.
A major barrier to the use of antimicrobial peptides as antibiotics is the toxicity or ability to lyse eukaryotic cells. In this study, a 26-residue amphipathic α-helical antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLKKTVLHTLLKAISS-amide) was used as the framework to design a series of D- and L-diastereomeric peptides and study the relationships of helicity and biological activities of α-helical antimicrobial peptides. Peptide helicity was measured by circular dichroism spectroscopy and demonstrated to correlate with the hydrophobicity of peptides and the numbers of D-amino acid substitutions. Therapeutic index was used to evaluate the selectivity of peptides against prokaryotic cells. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, the hemolytic activity of peptide analogs have been significantly reduced. Compared to the parent peptide, the therapeutic indices were improved of 44-fold and 22-fold against Gram-negative and Gram-positive bacteria, respectively. In addition, D- and L-diastereomeric peptides exhibited lower interaction with zwitterionic eukaryotic membrane and showed the significant membrane damaging effect to bacterial cells. Helicity was proved to play a crucial role on peptide specificity and biological activities. By simply replacing the hydrophobic or the hydrophilic amino acid residues on the non-polar or the polar face of these amphipathic derivatives of the parent peptide with D-amino acids, we demonstrated that this method could have excellent potential for the rational design of antimicrobial peptides with enhanced specificity.
The symmetric, tandem GU mismatch motifs, and , which only differ in the mismatch order, have an average difference in thermodynamic stability of 2 kcal/mol at 37 degrees C. Thermodynamic studies of duplexes containing these motifs indicate the effect is largely localized to the mismatches and adjacent base pairs. The three-dimensional structures of two representative duplexes, (rGGAGUUCC)2 and (rGGAUGUCC)2, were determined by two-dimensional NMR and a simulated annealing protocol. Local deviations are similar to other intrahelical GU mismatches with little effect on backbone torsion angles and a slight overtwisting between the base pair 5' of the G of the mismatch and the mismatch itself. Comparisons of the resulting stacking patterns along with electrostatic potential maps suggest that interactions between highly negative electrostatic regions between base pairs may play a role in the observed thermodynamic differences.
Oligoribonucleotides with 2'-5' linkages have been synthesized on solid support. UV melting and CD experiments indicate complementary strands associate to give complexes with melting temperatures 30 to 40 degrees C lower than for duplexes formed by 3'-5' oligoribonucleotides with the same sequence. UV melting and imino proton NMR spectra and NOEs for (2'-5') CGGCGCCG are consistent with formation of an antiparallel duplex. The results suggest greater duplex stability was one factor favoring 3'-5' over 2'-5' linkages in evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.