Water-soluble carbon nanocrystals (CNCs) with electrochemiluminescence (ECL) activity were released into aqueous solution from a graphite rod by applying a scanning potential. ECL emission of CNCs observed during their preparation probably provides a useful method for monitoring and screening nanocrystal preparation. The ECL behavior and its mechanism in CNCs have been studied in detail for the first time. The results suggest promising applications of CNCs in the development of new types of biosensors and display devices in the future on the basis of their strong and stable ECL emission, good stability, low cytotoxicity, excellent water solubility, easy labeling, and environmental friendliness.
A highly sensitive tactile sensor is devised by applying microstructured graphene arrays as sensitive layers. The combination of graphene and anisotropic microstructures endows this sensor with an ultra-high sensitivity of -5.53 kPa(-1) , an ultra-fast response time of only 0.2 ms, as well as good reliability, rendering it promising for the application of tactile sensing in artificial skin and human-machine interface.
Resistance switching characteristics of natural sericin protein film is demonstrated for nonvolatile memory application for the first time. Excellent memory characteristics with a resistance OFF/ON ratio larger than 10(6) have been obtained and a multilevel memory based on sericin has been achieved. The environmentally friendly high performance biomaterial based memory devices may hold a place in the future of electronic device development.
Novel highly fluorescent (FL) metal-organic frameworks (MOFs) have been synthesized by encapsulating branched poly-(ethylenimine)-capped carbon quantum dots (BPEI-CQDs) with a high FL quantum yield into the zeolitic imidazolate framework materials (ZIF-8). The as-synthesized FL-functionalized MOFs not only maintain an excellent FL activity and sensing selectivity derived from BPEI-CQDs but also can strongly and selectively accumulate target analytes due to the adsorption property of MOFs. The selective accumulation effect of MOFs can greatly amplify the sensing signal and specificity of the nanosized FL probe. The obtained BPEI-CQDs/ZIF-8 composites have been used to develop an ultrasensitive and highly selective sensor for Cu(2+) ion, with a wide response range (2-1000 nM) and a very low detection limit (80 pM), and have been successfully applied in the detection of Cu(2+) ions in environmental water samples. It is envisioned that various MOFs incorporated with FL nanostructures with high FL quantum yields and excellent selectivity would be designed and synthesized in similar ways and could be applied in sensing target analytes.
Novel metal-organic frameworks (MOFs) based solid catalysts have been synthesized by encapsulating Hemin into the HKUST-1 MOF materials. These have been first applied in the chemiluminescence field with outstanding performance. The functionalized MOFs not only maintain an excellent catalytic activity inheriting from Hemin but also can be cyclically utilized as solid mimic peroxidases in the neutral condition. The synthesized Hemin@HKUST-1 composites have been used to develop practical sensors for H2O2 and glucose with wide response ranges and low detection limits. It was envisioned that catalyst-functionalized MOFs for chemiluminescence sensing would have promising applications in green, selective, and sensitive detection of target analytes in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.