The emerging decentralized storage systems (DSSs), such as InterPlanetary File System (IPFS), Storj, and Sia, provide people with a new storage model. Instead of being centrally managed, the data are sliced up and distributed across the nodes of the network. Furthermore, each data object is uniquely identified by a cryptographic hash (ObjectId) and can only be retrieved by ObjectId. Compared with the search functions provided by the existing centralized storage systems, the application scenarios of the DSSs are subject to certain restrictions. In this paper, we first apply decentralized B+Tree and HashMap to the DSSs to provide keyword search. Both indexes are kept in blocks. Since these blocks may be scattered on multiple nodes, we ensure that all operations involve as few blocks as possible to reduce network cost and response time. In addition, the version control and version merging algorithms are designed to effectively organize the indexes and facilitate data integration. The experimental results prove that our indexes have excellent availability and scalability.
Many distributed database systems that guarantee high concurrency and scalability adopt read-write separation architecture. Simultaneously, these systems need to store massive amounts of data daily, requiring different mechanisms for storing and accessing data, such as hot and cold data access strategies. Unlike distributed storage systems, the distributed database splits a table into sub-tables or shards, and the request frequency of each sub-table is not the same within a specific time. Therefore, it is not only necessary to design hot-to-cold approaches to reduce storage overhead, but also cold-to-hot methods to ensure high concurrency of those systems. We present a new redundant strategy named CBase-EC, using erasure codes to trade the performances of transaction processing and storage efficiency for CBase database systems developed for financial scenarios of the Bank. Two algorithms are proposed: the hot-cold tablets (shards) recognition algorithm and the hot-cold dynamic conversion algorithm. Then we adopt two optimization approaches to improve CBase-EC performance. In the experiment, we compare CBase-EC with three-replicas in CBase. The experimental results show that although the transaction processing performance declined by no more than 6%, the storage efficiency increased by 18.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.