The communication between cells and between cellular organelles is often controlled by the interaction of membrane proteins. Although many methods for the detection of protein-protein interactions (PPIs) exist, membrane PPIs remain difficult to detect. Here we developed a proximity-based tagging system, PUP-IT (pupylation-based interaction tagging), to identify membrane protein interactions. In this approach, a small protein tag, Pup, is applied to proteins that interact with a PafA-fused bait, enabling transient and weak interactions to be enriched and detected by mass spectrometry. Pup does not diffuse from the enzyme, which allows high-specificity labeling. We applied this approach to CD28, a critical costimulatory receptor for T lymphocyte activation, and identified known CD28 binding partners and multiple potential interacting proteins. In addition, we demonstrated that this method can identify the interaction between a cell surface receptor and its ligand.
In , most mitochondrial mRNAs undergo internal changes by RNA editing and 3' end modifications. The temporally separated and functionally distinct modifications are manifested by adenylation prior to editing, and by post-editing extension of a short A-tail into a long A/U-heteropolymer. The A-tail stabilizes partially and fully edited mRNAs, while the A/U-tail enables mRNA binding to the ribosome. Here, we identify an essential pentatricopeptide repeat-containing RNA binding protein, kinetoplast polyadenylation factor 3 (KPAF3), and demonstrate its role in protecting pre-mRNA against degradation by the processome. We show that KPAF3 recruits KPAP1 poly(A) polymerase to the 3' terminus, thus leading to pre-mRNA stabilization, or decay depending on the occurrence and extent of editing., KPAF3 stimulates KPAP1 activity and inhibits mRNA uridylation by RET1 TUTase. Our findings indicate that KPAF3 selectively directs pre-mRNA toward adenylation rather than uridylation, which is a default post-trimming modification characteristic of ribosomal and guide RNAs. As a quality control mechanism, KPAF3 binding ensures that mRNAs entering the editing pathway are adenylated and, therefore, competent for post-editing A/U-tailing and translational activation.
The methyltransferase Polycomb Repressive Complex 2 (PRC2), composed of EZH2, SUZ12, and EED subunits, is associated with transcriptional repression via tri-methylation of histone H3 on lysine 27 residue (H3K27me3). PRC2 is a valid drug target, as the EZH2 gain-of-function mutations identified in patient samples drive tumorigenesis. PRC2 inhibitors have been discovered and demonstrated anti-cancer efficacy in clinic. However, their pharmacological mechanisms are poorly understood. MAK683 is a potent EED inhibitor in clinical development. Focusing on MAK683-sensitive tumors with SMARCB1 or ARID1A loss, we identified a group of PRC2 target genes with high H3K27me3 signal through epigenomic and transcriptomic analysis. Multiple senescence-associated secretory phenotype (SASP) genes, such as GATA4, MMP2/10, ITGA2 and GBP1, are in this group besides previously identified CDKN2A/p16. Upon PRC2 inhibition, the de-repression of SASP genes is detected in multiple sensitive models and contributes to decreased Ki67+, extracellular matrix (ECM) reorganization, senescence associated inflammation and tumor regression even in CDKN2A/p16 knockout tumor. And the combination of PRC2 inhibitor and CDK4/6 inhibitor leads to better effect. The genes potential regulated by PRC2 in neuroblastoma samples exhibited significant enrichment of ECM and senescence associated inflammation, supporting the clinical relevance of our results. Altogether, our results unravel the pharmacological mechanism of PRC2 inhibitors and propose a combination strategy for MAK683 and other PRC2 drugs.
In Trypanosoma brucei , the editosome, composed of RNA-editing substrate-binding complex (RESC) and RNA-editing catalytic complex (RECC), orchestrates guide RNA (gRNA)–programmed editing to recode cryptic mitochondrial transcripts into messenger RNAs (mRNAs). The mechanism of information transfer from gRNA to mRNA is unclear owing to a lack of high-resolution structures for these complexes. With cryo–electron microscopy and functional studies, we have captured gRNA-stabilizing RESC-A and gRNA-mRNA–binding RESC-B and RESC-C particles. RESC-A sequesters gRNA termini, thus promoting hairpin formation and blocking mRNA access. The conversion of RESC-A into RESC-B or -C unfolds gRNA and allows mRNA selection. The ensuing gRNA-mRNA duplex protrudes from RESC-B, likely exposing editing sites to RECC-catalyzed cleavage, uridine insertion or deletion, and ligation. Our work reveals a remodeling event facilitating gRNA-mRNA hybridization and assembly of a macromolecular substrate for the editosome’s catalytic modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.