B7-H6, a member of the B7 family molecules, participates in the clearance of tumor cells by binding to NKp30 on NK cells. B7-H6 expression level in esophageal squamous cell carcinoma (ESCC) and the clinical value remain unknown. The goal of this study was to determine the expression of B7-H6 in ESCC and further explore its clinical significance. We retrospectively collected the clinical data of 145 patients diagnosed with ESCC between January 2007 and December 2008. The expression of B7-H6 of the pathological tissue samples was detected by immunohistochemistry. The chi-square (χ2) test was used to analyse the relationships of B7-H6 and clinicopathological characteristics. Survival and hazard functions were estimated using the Kaplan-Meier method, and survival between groups was compared using the two-sided log-rank test. The Cox proportional hazards regression model was used to adjust for the risk factors related to overall survival (OS). 133/145 (91.72%) of the ESCC tissue samples exhibited B7-H6 expression. The expression level of B7-H6 was correlated with T stage (P = 0.036) and lymphatic metastasis status (P = 0.044). High B7-H6 expression (P = 0.003) was associated with a significantly worse OS than low B7-H6 expression. Multivariate Cox proportional hazards regression analysis demonstrated that tumour size (P = 0.021), B7-H6 expression (P = 0.025) and lymphatic metastasis status (P = 0.049) were independent prognostic factors of OS for ESCC. Collectively, our findings suggest that B7-H6 is widely expressed in ESCC samples. And B7-H6 may represent a predictor of poor prognosis for ESCC.
Background: Recent studies have identified that RNA 5-methylcytosine (m5C) is a wide-spread epigenetic modification in tumorigenesis. However, the clinical and immunotherapeutic values of m5C regulator NOP2 in 33 cancers remain unclear.Methods: The mRNA expression data and clinical data of 33 cancers were downloaded from The Cancer Genome Atlas (TCGA) database. The immunotherapy data including GSE67501, GSE78220, GSE35640, and IMvigor210 were downloaded from the Gene Expression Omnibus (GEO) database and the website based on the Creative Commons 3.0 license (http://research-pub.Gene.com/imvigor210corebiologies). The expression, survival, clinical parameters, tumor mutation burden (TMB), microsatellite instability (MSI), and tumor microenvironment (TME) were evaluated. Finally, the relationship between NOP2 and immunotherapy response was further explored.Results: NOP2 was significantly upregulated in most cancers, and high NOP2 expression was associated with poor prognosis. TMB, MSI, and NOP2 activities were involved in the dysregulation of NOP2. NOP2 was closely associated with immune cell infiltration, immune modulators, and immunotherapeutic inactivation.Conclusions: We comprehensively explored the clinical and immunotherapeutic values of NOP2 in cancers, providing evidence regarding the function of NOP2 and its role in clinical treatment.
Background: DNA methylation is an important epigenetic modification, among which 5-methylcytosine methylation (5mC) is generally associated with tumorigenesis. Nonetheless, the potential roles of 5mC regulators in the tumor microenvironment (TME) remain unclear.Methods: The 5mC modification patterns of 1,374 lung adenocarcinoma samples were analyzed systematically. The correlation between the 5mC modification and tumor microenvironment cell infiltration was further assessed. The 5mCscore was developed to evaluate tumor mutation burden, immune check-point inhibitor response, and the clinical prognosis of individual tumors.Results: Three 5mC modification patterns were established based on the clinical characteristics of 21 5mC regulators. According to the differential expression of 5mC regulators, three distinct 5mC gene cluster were also identified, which showed distinct TME immune cell infiltration patterns and clinical prognoses. The 5mCscore was constructed to evaluate the tumor mutation burden, immune check-point inhibitor response, and prognosis characteristics. We found that patients with a low 5mCscore had significant immune cell infiltration and increased clinical benefit.Conclusion: This study indicated that the 5mC modification is involved in regulating TME infiltration remodeling. Targeting 5mC modification regulators might be a novel strategy to treat lung cancer.
Background: Lung cancer is the leading cause of cancer-related death globally. Hypoxia can suppress the activation of the tumor microenvironment (TME), which contributes to distant metastasis. However, the role of hypoxia-mediated TME in predicting the diagnosis and prognosis of lung adenocarcinoma (LUAD) patients remains unclear.Methods: Both RNA and clinical data from the LUAD cohort were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Both univariate and multivariate Cox regression analyses were used to further screen prognosis-related hypoxia gene clusters. Time-dependent receiver operation characteristic (ROC) curves were established to evaluate the predictive sensitivity and specificity of the hypoxia-related risk signature. The characterization of gene set enrichment analysis (GSEA) and TME immune cell infiltration were further explored to identify hypoxia-related immune infiltration.Results: Eight hypoxia-related genes (LDHA, DCN, PGK1, PFKP, FBP1, LOX, ENO3, and CXCR4) were identified and established to construct a hypoxia-related risk signature. The high-risk group showed a poor overall survival compared to that of the low-risk group in the TCGA and GSE68465 cohorts (p < 0.0001). The AUCs for 1-, 3-, and 5-year overall survival were 0.736 vs. 0.741, 0.656 vs. 0.737, and 0.628 vs. 0.649, respectively. The high-risk group was associated with immunosuppression in the TME.Conclusion: The hypoxia-related risk signature may represent an independent biomarker that can differentiate the characteristics of TME immune cell infiltration and predict the prognosis of LUAD.
Introduction To investigate the effect of local treatment strategy on survival outcome in de novo stage IV breast cancer patients who received chemotherapy. Methods We identified stage IV breast cancers that presented with synchronous metastasis from the Surveillance, Epidemiology, and End Results database. Binomial logistic regression, Kaplan–Meier survival curves, propensity score matching (PSM), and multivariate Cox regression model were used for statistical analyses. Results We identified 5,374 patients in total, including 2,319 (43.2%), 2,137 (39.8%), and 918 (17.1%) patients who received surgery alone, surgery+radiotherapy, and radiotherapy alone, respectively. The probability of patients receiving surgery alone decreased over time, and the probability of patients receiving radiotherapy alone increased over time. However, no significant difference was observed in the probability of patients receiving postoperative radiotherapy (P = 0.291). The 3-year breast cancer-specific survival (BCSS) in patients treated with surgery alone, radiotherapy alone, and surgery+radiotherapy was 57.1, 35.9, and 63.9%, respectively (P < 0.001). The local treatment strategy was the independent prognostic factor related to BCSS. Using surgery alone as the reference, radiotherapy alone was related to lower BCSS (P < 0.001), while additional radiotherapy after surgery improved BCSS (P < 0.001). Similar results were observed using PSM. Conclusions Compared to radiotherapy alone, surgery to the primary site may confer a survival benefit in stage IV breast cancer with synchronous metastasis, and additional postoperative radiotherapy further improves outcome after primary tumor removal. Local treatment can only be an option in highly selected patients with de novo stage IV disease in the treatment guidelines. More prospective studies are needed to investigate the role of local management for this patient subset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.