Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.
The transmission of viral infections between plant and fungal hosts has been suspected to occur, based on phylogenetic and other findings, but has not been directly observed in nature. Here, we report the discovery of a natural infection of the phytopathogenic fungus by a plant virus, cucumber mosaic virus (CMV). The CMV-infected strain was obtained from a potato plant growing in Inner Mongolia Province of China, and CMV infection was stable when this fungal strain was cultured in the laboratory. CMV was horizontally transmitted through hyphal anastomosis but not vertically through basidiospores. By inoculation via protoplast transfection with virions, a reference isolate of CMV replicated in and another phytopathogenic fungus, suggesting that some fungi can serve as alternative hosts to CMV. Importantly, in fungal inoculation experiments under laboratory conditions, could acquire CMV from an infected plant, as well as transmit the virus to an uninfected plant. This study presents evidence of the transfer of a virus between plant and fungus, and it further expands our understanding of plant-fungus interactions and the spread of plant viruses.
Infection of the chestnut blight fungus, Cryphonectria parasitica, by the prototypic hypovirus Cryphonectria hypovirus 1-EP713 (CHV1-EP713) or by the type member, Mycoreovirus 1-Cp9B21 (MyRV1-Cp9B21), of a novel genus (Mycoreovirus) of the family Reoviridae results in hypovirulence, but with a different spectrum of phenotypic changes. The former virus depresses pigmentation and conidiation dramatically, whilst the latter virus has little effect on these processes. This study showed that double infection by the two viruses resulted in a phenotype similar to that of CHV1-EP713 singly infected colonies, but with further decreased levels of host conidiation and vegetative growth and increased levels of MyRV1-Cp9B21 genomic dsRNA accumulation (twofold) and vertical transmission (sixfold). In contrast, CHV1-EP713 RNA accumulation was not altered by MyRV1-Cp9B21 infection. It was also found that the papain-like cysteine protease p29, encoded by CHV1-EP713 ORF A, contributes to the phenotypic alterations and transactivation of MyRV1-Cp9B21 replication and transmission. Chromosomally expressed p29 was able to increase MyRV1-Cp9B21 vertical transmission by more than twofold and genomic RNA accumulation by 80 %. Transactivation was abolished by CysRGly mutations at p29 residues 70 and 72 located within the previously identified symptom-determinant domain required for suppression of host pigmentation and sporulation and p29-mediated in trans enhancement of homologous Dp29 mutant virus RNA replication. Transactivation was not altered by Ser substitutions at the p29 protease catalytic residue Cys 162 . These results indicated a link between p29-mediated enhancement of heterologous virus accumulation and transmission and p29-mediated host symptom expression. The role of p29 as a suppressor of RNA silencing is discussed.
Mycoreovirus 1 (MyRV1), a member of the Reoviridae family possessing a genome consisting of 11 dsRNA segments (S1-S11), and the prototype hypovirus (CHV1-EP713) of the Hypoviridae family, which is closely related to the monopartite picorna-like superfamily with a ssRNA genome, infect the chestnut blight fungus and cause virulence attenuation and distinct phenotypic alterations in the host. Here, we present evidence for reproducible induction of intragenic rearrangements of MyRV1 S6 and S10, mediated by the multifunctional protein p29 encoded by CHV1. S6 and S10 underwent an almost full-length ORF duplication (S6L) and an internal deletion of three-fourths of the ORF (S10ss). No significant influence on symptom induction in the fungal host was associated with the S6L rearrangement. In contrast, S10-encoded VP10, while nonessential for MyRV1 replication, was shown to contribute to virulence reduction and reduced growth of aerial mycelia. Furthermore, p29 was found to copurify with MyRV1 genomic RNA and bind to VP9 in vitro and in vivo, suggesting direct interactions of p29 with the MyRV1 replication machinery. This study provides the first example of a viral factor involved in RNA genome rearrangements of a different virus and shows its usefulness as a probe into the mechanism of replication and symptom expression of a heterologous virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.