The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure.
The core-shell nanoparticle structure, which consists of an inner layer "guest" nanoparticle encapsulated inside another of a different material, is the simplest motif in two-component systems. In comparison to the conventional single-component systems, complex systems pose both challenges and opportunities. In this Account, we describe our recent progresses in using core-shell motif for exploring new and sophisticated nanostructures. Our discussion is focused on the mechanistic details, in order to facilitate rational design in future studies. We believe that systematic development of synthetic capability, particularly in complex and multifunctional systems, is of great importance for future applications. A key issue in obtaining core-shell nanostructures is minimizing the core-shell interfacial tension. Typically, one can coat the core with a ligand for better interaction with the shell. By selecting suitable ligands, we have developed general encapsulation methods in three systems. A variety of nanoparticles and nanowires were encapsulated using either amphiphilic block copolymer (polystyrene-block-poly(acrylic acid)), conductive polymer (polyaniline, polypyrrole, or polythiophene), or silica as the shell material. Obvious uses of shells are to stabilize colloidal objects, retain their surface ligands, prevent particle aggregation, or preserve the assembled superstructures. These simple capabilities are essential in our synthesis of surface-enhanced Raman scattering nanoprobes, in assigning the solution state of nanostructures before drying, and in developing purification methods for nano-objects. When it is applied in situ during nanocrystal growth or nanoparticle assembly, the intermediates trapped by shell encapsulation can offer great insights into the mechanistic details. On the other hand, having a shell as a second component provides a window for exploring the core-shell synergistic effects. Hybrid core-shell nanocrystals have interesting effects, for example, in causing the untwisting of nanowires to give double helices. In addition, partial polymer shells can bias nanocrystal growth towards one direction or promote the random growth of Au dendritic structures; contracting polymer shells can compress the embedded nanofilaments (Au nanowires or carbon nanotubes), forcing them to coil into rings. Also, by exploiting the sphere-to-cylinder conversion of block copolymer micelles, the Au nanoparticles pre-embedded in the polymer micelles can be assembled into long chains. Lastly, shells are also very useful for mechanistic studies. We have demonstrated such applications in studying the controlled aggregation of nanoparticles, in probing the diffusion kinetics of model drug molecules from nanocarriers to nanoacceptors, and in measuring the ionic diffusion through polyaniline shells.
Cerebrospinal fluid (CSF) dynamics have been mostly studied with cardiac-gated phase contrast MRI combining signal from many cardiac cycles to create cine-phase sampling of one time averaged cardiac cycle. The relative effects of cardiac and respiratory changes on CSF movement are not well understood. There is possible respiration driven movement of CSF in ventricles, cisterns, and subarachnoid spaces which has not been characterized with velocity measurements. To date, commonly used cine-phase contrast techniques of velocity imaging inherently cannot detect respiratory velocity changes since cardiac gated data acquired over several minutes randomizes respiratory phase contributions. We have developed an extremely fast, real-time and quantitative MRI technique to image CSF velocity in simultaneous multi-slice (SMS) echo planar imaging (EPI) acquisitions of 3 or 6 slice levels simultaneously over 30 seconds and observe 3D spatial distributions of CSF velocity. Measurements were made in 10 subjects utilizing a respiratory belt to record respiratory phases and visual cues to instruct subjects on breathing rates. A protocol is able to measure velocity within regions of brain and basal cisterns covered with 24 axial slices in 4 minutes, repeated for 3 velocity directions. These measurements were performed throughout the whole brain, rather than in selected line regions so that a global view of CSF dynamics could be visualized. Observations of cardiac and breathing-driven CSF dynamics show bidirectional respiratory motion occurs primarily along the central axis through the basal cisterns and intraventricular passageways and to a lesser extent in the peripheral Sylvian fissure with little CSF motion present in subarachnoid spaces. During inspiration phase, there is upward (inferior to superior direction) CSF movement into the cranial cavity and into the lateral ventricles and a reversed direction in expiration phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.