Abstract-Liquid-crystal spatial light modulator (LC-SLM) has been widely applied as a programmable digital device. However, the LC-SLM can only manipulate on light fields accurately under designated wavelengths since, when being uploaded a specific grayscale image onto it, the phase retardance offered by the LC-SLM is relevant to the wavelength of the incident light. This means that the calibration of LC-SLM is indispensable once the working wavelength changes. In this paper, based on a phase retrieval algorithm, a novel phase calibration method with high efficiency and accuracy is proposed for scaling LC-SLM. In the method, a 1-D phase retrieval algorithm for recovering the phase of a 1-D light field distribution is used to measure the voltage-phase characteristic curve of LC-SLM, where the gradient descent algorithm with a Root Mean Square propagation is introduced to obtain the phase. Simulations and experiments show that this method is stable and has the ability of anti-noise on some conditions and can eliminate the influence caused by crosstalk between pixels on the calibration. Compared with the traditional diffraction-based method, our method improves the calibration error up to 30% under the same experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.