Edge features contain important information about graphs. However, current state-of-the-art neural network models designed for graph learning, e.g. graph convolutional networks (GCN) and graph attention networks (GAT), adequately utilize edge features, especially multidimensional edge features. In this paper, we build a new framework for a family of new graph neural network models that can more sufficiently exploit edge features, including those of undirected or multi-dimensional edges. The proposed framework can consolidate current graph neural network models; e.g. graph convolutional networks (GCN) and graph attention networks (GAT). The proposed framework and new models have the following novelties: First, we propose to use doubly stochastic normalization of graph edge features instead of the commonly used row or symmetric normalization approches used in current graph neural networks. Second, we construct new formulas for the operations in each individual layer so that they can handle multi-dimensional edge features. Third, for the proposed new framework, edge features are adaptive across network layers. As a result, our proposed new framework and new models can exploit a rich source of graph information. We apply our new models to graph node classification on several citation networks, whole graph classification, and regression on several molecular datasets. Compared with the current state-of-the-art methods, i.e. GCNs and GAT, our models obtain better performance, which testify to the importance of exploiting edge features in graph neural networks.
Conclusions: Machine learning algorithms can be employed to develop prognostic predictive biomarkers for stroke outcomes in ischemic stroke patients, particularly in regard to identifying acute gene expression changes that occur during stroke.
Herein we present the R package rFSA, which implements an algorithm for improved variable selection. The algorithm searches a data space for models of a user-specified form that are statistically optimal under a measure of model quality. Many iterations afford a set of feasible solutions (or candidate models) that the researcher can evaluate for relevance to his or her questions of interest. The algorithm can be used to formulate new or to improve upon existing models in bioinformatics, health care, and myriad other fields in which the volume of available data has outstripped researchers' practical and computational ability to explore larger subsets or higher-order interaction terms. The package accommodates linear and generalized linear models, as well as a variety of criterion functions such as Allen's PRESS and AIC. New modeling strategies and criterion functions can be adapted easily to work with rFSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.