BackgroundLignin materials are abundant and among the most important potential sources for biofuel production. Development of an efficient lignin degradation process has considerable potential for the production of a variety of chemicals, including bioethanol. However, lignin degradation using current methods is inefficient. Given their immense environmental adaptability and biochemical versatility, bacterial could be used as a valuable tool for the rapid degradation of lignin. Kraft lignin (KL) is a polymer by-product of the pulp and paper industry resulting from alkaline sulfide treatment of lignocellulose, and it has been widely used for lignin-related studies.ResultsBeta-proteobacterium Cupriavidus basilensis B-8 isolated from erosive bamboo slips displayed substantial KL degradation capability. With initial concentrations of 0.5–6 g L-1, at least 31.3% KL could be degraded in 7 days. The maximum degradation rate was 44.4% at the initial concentration of 2 g L-1. The optimum pH and temperature for KL degradation were 7.0 and 30°C, respectively. Manganese peroxidase (MnP) and laccase (Lac) demonstrated their greatest level of activity, 1685.3 U L-1 and 815.6 U L-1, at the third and fourth days, respectively. Many small molecule intermediates were formed during the process of KL degradation, as determined using GC-MS analysis. In order to perform metabolic reconstruction of lignin degradation in this bacterium, a draft genome sequence for C. basilensis B-8 was generated. Genomic analysis focused on the catabolic potential of this bacterium against several lignin-derived compounds. These analyses together with sequence comparisons predicted the existence of three major metabolic pathways: β-ketoadipate, phenol degradation, and gentisate pathways.ConclusionThese results confirmed the capability of C. basilensis B-8 to promote KL degradation. Whole genomic sequencing and systematic analysis of the C. basilensis B-8 genome identified degradation steps and intermediates from this bacterial-mediated KL degradation method. Our findings provide a theoretical basis for research into the mechanisms of lignin degradation as well as a practical basis for biofuel production using lignin materials.
Abstract. We use a chemical transport model to examine the change of sulfate-nitrate-ammonium (SNA) aerosols over China due to anthropogenic emission changes of their precursors (SO2, NOx and NH3) from 2000 to 2015. From 2000 to 2006, annual mean SNA concentrations increased by about 60% over China as a result of the 60% and 80% increases in SO2 and NOx emissions. During this period, sulfate is the dominant component of SNA over South China (SC) and Sichuan Basin (SCB), while nitrate and sulfate contribute equally over North China (NC). Based on emission reduction targets in the 12th (2011–2015) Five-Year Plan (FYP), China's total SO2 and NOx emissions are projected to change by −16% and +16% from 2006 to 2015, respectively. The amount of NH3 emissions in 2015 is uncertain, given the lack of sufficient information on the past and present levels of NH3 emissions in China. With no change in NH3 emissions, SNA mass concentrations in 2015 will decrease over SCB and SC compared to their 2006 levels, but increase over NC where the magnitude of nitrate increase exceeds that of sulfate reduction. This suggests that the SO2 emission reduction target set by the 12th FYP, although effective in reducing SNA over SC and SCB, will not be successful over NC, for which NOx emission control needs to be strengthened. If NH3 emissions are allowed to keep their recent growth rate and increase by +16% from 2006 to 2015, the benefit of SO2 reduction will be completely offset over all of China due to the significant increase of nitrate, demonstrating the critical role of NH3 in regulating nitrate. The effective strategy to control SNA and hence PM2.5 pollution over China should thus be based on improving understanding of current NH3 emissions and putting more emphasis on controlling NH3 emissions in the future.
Magnetic Fe3O4@poly(m-phenylenediamine) particles (Fe3O4@PmPDs) with well-defined core-shell structure were first designed for high performance Cr(VI) removal by taking advantages of the easy separation property of magnetic nanoparticles (MNPs) and the satisfactory adsorption property of polymers. Through controlling the polymerization on MNPs, directly coating was realized without the complicated premodification procedures. The particle property and adsorption mechanism were analyzed in details. Fe3O4@PmPDs exhibited tunable PmPD shell thickness from 10 to 100 nm, high magnetic (∼150 to ∼73 emu g(-1)) and facile separation property by magnet. The coating of PmPD significantly enhanced Cr(VI) adsorption capacity from 46.79 (bare MNPs) to 246.09 mg g(-1) (71.55% PmPD loading proportion), much higher than many reported composite adsorbents. The high Cr(VI) removal performance was attributed to the adsorption of Cr(VI) on protonated imino groups and the efficient reduction of Cr(VI) to Cr(III) by amine, followed by Cr(III) chelated on imino groups, which are spontaneous and endothermic. The Fe3O4@PmPDs have great potential in treating Cr(VI)-contaminated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.