High-temperature superconductors have great potential for various engineering applications such as a flywheel energy storage system. The levitation force of bulk YBCO superconductors can be drastically increased by increasing the strength of the external field. Therefore, a 6T conduction-cooled superconducting magnet has been developed for levitation force measurement application. Firstly, to protect the magnet from mechanical damage, reliable stress analysis inside the coil is paramount before the magnet is built and tested. Therefore, a 1/4 two-dimensional (2D) axisymmetric model of the magnet was established, and the mechanical stress in the whole process of winding, cooling down and energizing of the magnet was calculated. Then, the charging, discharging, and preliminary levitation force performance tests were performed to validate the operating stability of the magnet. According to the simulation results, the peak stresses of all coil models are within the allowable value and the winding maintains excellent mechanical stability in the superconducting magnet. The test results show that the superconducting magnet can be charged to its desired current of 150 A without quenching and maintain stable operation during the charging and discharging process. What is more, the superconducting magnet can meet the requirements for the levitation force measurement of both low magnetic field and high magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.