This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease caused by pirAB toxins encoded by a plasmid found in Vibrio parahaemolyticus. The pirAB toxins are the homologs of the Photorhabdus insect-related (Pir) toxins. Here, we report the complete sequences of the AHPND-causing plasmid isolated from V. owensii, as well as those of its 11 siblings (pVH family). In addition, we also included 13 related plasmids (pVH-r family) without the pirAB genes isolated from a variety of species within the Vibrio Harveyi clade. Furthermore, the pirAB-Tn903 composite transposon was identified in pVH, and both ends of the transposon appeared to have inserted simultaneously into the ancestor plasmid at different sites. The homologue counterparts of pirAB were also detected in a non-pVH plasmid in V. campbellii. Taken together, our results provide novel insights into the acquisition and evolution of pirAB as well as related plasmids in the Vibrio Harveyi clade.
The recently reported B.1.1.529 omicron variant of SARS-CoV-2 includes 34 mutations in the spike protein relative to the Wuhan strain, including 15 mutations in the receptor binding domain (RBD). Functional studies have shown omicron to substantially escape the activity of many SARS-CoV-2-neutralizing antibodies. Here we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of the omicron spike protein ectodomain. The structure depicts a spike that is exclusively in the 1-RBD-up conformation with high mobility of RBD. Many mutations cause steric clashes and/or altered interactions at antibody binding surfaces, whereas others mediate changes of the spike structure in local regions to interfere with antibody recognition. Overall, the structure of the omicron spike reveals how mutations alter its conformation and explains its extraordinary ability to evade neutralizing antibodies.
We sequenced Vibrio owensii strain SH-14, which causes serious acute hepatopancreatic necrosis disease (AHPND) in shrimp. Sequence analysis showed a large extrachromosomal plasmid, which encoded pir toxin genes and shared highly sequence similarity with the one observed in AHPND-causing Vibrio parahaemolyticus strains. The results suggest that this plasmid appears to play an important role in shrimp AHPND.
The identification of the Omicron variant (B.1.1.529.1 or BA.1) of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in Botswana in November 20211 immediately raised alarms due to the sheer number of mutations in the spike glycoprotein that could lead to striking antibody evasion. We2 and others3-6 recently reported results in this Journal confirming such a concern. Continuing surveillance of Omicron evolution has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K mutation (BA.1+R346K) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike mutations while lacking 13 spike mutations found in BA.1. We therefore extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.12,3,5,6. These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)7, which had retained appreciable activity against BA.1 and BA.1+R346K2-4,6 . This new finding shows that no presently approved or authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.