Photocatalytic hydrogen evolution from water has triggered an intensive search for metal-free semiconducting photocatalysts. However, traditional semiconducting materials suffer from limited hydrogen evolution efficiency owing to low intrinsic electron transfer, rapid recombination of photogenerated carriers, and lack of artificial microstructure. Herein, we report a metal-free half-metallic carbon nitride for highly efficient photocatalytic hydrogen evolution. The introduced half-metallic features not only effectively facilitate carrier transfer but also provide more active sites for hydrogen evolution reaction. The nanosheets incorporated into a micro grid mode resonance structure via in situ pyrolysis of ionic liquid, which show further enhanced photoelectronic coupling and entire solar energy exploitation, boosts the hydrogen evolution rate reach up to 1009 μmol g−1 h−1. Our findings propose a strategy for micro-structural regulations of half-metallic carbon nitride material, and meanwhile the fundamentals provide inspirations for the steering of electron transfer and solar energy absorption in electrocatalysis, photoelectrocatalysis, and photovoltaic cells.
Increasing amounts of genes have been shown to utilize alternative polyadenylation (APA) 3′-processing sites depending on the cell and tissue type and/or physiological and pathological conditions at the time of processing, and the construction of genome-wide database regarding APA is urgently needed for better understanding poly(A) site selection and APA-directed gene expression regulation for a given biology. Here we present a web-accessible database, named APASdb (http://mosas.sysu.edu.cn/utr), which can visualize the precise map and usage quantification of different APA isoforms for all genes. The datasets are deeply profiled by the sequencing alternative polyadenylation sites (SAPAS) method capable of high-throughput sequencing 3′-ends of polyadenylated transcripts. Thus, APASdb details all the heterogeneous cleavage sites downstream of poly(A) signals, and maintains near complete coverage for APA sites, much better than the previous databases using conventional methods. Furthermore, APASdb provides the quantification of a given APA variant among transcripts with different APA sites by computing their corresponding normalized-reads, making our database more useful. In addition, APASdb supports URL-based retrieval, browsing and display of exon-intron structure, poly(A) signals, poly(A) sites location and usage reads, and 3′-untranslated regions (3′-UTRs). Currently, APASdb involves APA in various biological processes and diseases in human, mouse and zebrafish.
The future of sustainable energy supply demands innovative breakthroughs in the design of cheap and durable catalysts for efficient electrochemical water splitting. Distinct from the conventional doping, defecting, and nanostructuring strategy, we develop a simple and feasible electric-strain way to trigger electrocatalyst's structural phase transition via regulating carrier distribution, realizing an excellent hydrogen evolution reaction (HER) performance. Herein, thanks to the intrinsic noncentrosymmetric polarization of our designed Janus MoReS 3 nanostructures, large numbers of carriers are energetically pulled into the catalyst's interior to generate electric strain, leading to the deformation of the charged MoReS 3 nanosheets and transition from T 0 phase to another reversible atomic configuration (T 00 phase) with higher catalytic activity and faster carrier transfer. The electric-strain-generated T 00-MoReS 3 shows HER performances in excess of a commercial Pt/C electrode at large current densities, reaching a current density of 150 mA cm À2 at an overpotential of 189 mV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.