Inner ear disorders are a cluster of diseases that cause hearing loss in more than 1.5 billion people worldwide. However, the presence of the blood-labyrinth barrier (BLB) on the surface of the inner ear capillaries greatly hinders the effectiveness of systemic drugs for prevention and intervention due to the low permeability, which restricts the entry of most drug compounds from the bloodstream into the inner ear tissue. Here, we report the finding of a novel receptor, low-density lipoprotein receptor-related protein 1 (LRP1), that is expressed on the BLB, as a potential target for shuttling therapeutics across this barrier. As a proof-of-concept, we developed an LRP1-binding peptide, IETP2, and covalently conjugated a series of model small-molecule compounds to it, including potential drugs and imaging agents. All compounds were successfully delivered into the inner ear and inner ear lymph, indicating that targeting the receptor LRP1 is a promising strategy to enhance the permeability of the BLB. The discovery of the receptor LRP1 will illuminate developing strategies for crossing the BLB and for improving systemic drug delivery for inner ear disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.