In this paper, based on basic constraint qualification (BCQ) and strong BCQ for convex generalized equation, we are inspired to further discuss constraint qualifications of BCQ and strong BCQ for nonconvex generalized equation and then establish their various characterizations. As applications, we use these constraint qualifications to study metric subregularity of nonconvex generalized equation and provide necessary and/or sufficient conditions in terms of constraint qualifications considered herein to ensure nonconvex generalized equation having metric subregularity.
In this paper, we mainly study metric subregularity for a convex constraint system defined by a convex set-valued mapping and a convex constraint subset. The main work is to provide several primal equivalent conditions for metric subregularity by contingent cone and graphical derivative. Further it is proved that these primal equivalent conditions can characterize strong basic constraint qualification of convex constraint system given by
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.