Honghu Lake, which listed in the “Ramsar Convention”, is the seventh largest freshwater lake in China and is regarded as one of the biggest freshwater product output areas in China. The toxic element distribution in cultured and wild fish and the corresponding health risks through fish consumption from Honghu area were investigated. The mean concentration in the muscle of cultured and wild fish (Carassius auratus and Ctenopharyngodon idellus) decreased in the order: Zn (18.94) > Cu (0.8489) > Cr (0.2840) > Pb (0.2052) and Zn (16.30) > Cr (1.947) > Cu (0.4166) > Pb (0.0525) > Cd (0.0060) (mean; mg/kg, wet weight). Scales (Multi factor pollution index (MPI) = 3.342) and the liver (MPI = 1.276) were regarded as the main accumulation tissues for cultured fish, and the bladder (MPI = 0.640) and intestine (MPI = 0.477) were regarded as the main accumulation tissues for wild fish. There were no obvious health risks associated with the consumption of cultured and wild fish based on the calculated results of the target hazard quotient (THQ), carcinogenic risk (CR), and estimated weekly intake (EWI). Pb and Cr were recognized as the major health risk contributors for inhabitants through wild and cultured fish consumption. Cultured fish had a greater health risk than wild fish based on the calculation results of THQ and CR. Muscle consumption resulted in more health risks than mixed edible tissues for cultured fish, but for wild fish, the conclusion was the opposite. Mixed fish (cultured:wild = 1:1) muscle consumption had relatively lower risks than the consumption of cultured or wild fish muscle separately. Consuming no more than 465 g/day (wet wt) of cultured fish muscle, 68 g/day (wet wt) of wild fish muscle, 452 g/day (wet wt) of mixed cultured fish edible tissues or 186 g/day (wet wt) of mixed wild fish edible tissues from the Honghu area can assure human health.
This study investigated the concentrations of Zn, Cu, Cr, Pb, As and Cd in different tissues of
E
.
crassipes
from Honghu Lake. The total concentrations of trace elements in
E
.
crassipes
were observed in descending order: Zn (111.6162) > Cu (15.7494) > Cr (7.0466) > Pb (5.6251) > As (3.6831) > Cd (0.1941) mg/kg. The order of the bioconcentration factor (BCF) measured in
E
.
crassipes
was Zn > As > Cr > Cu > Pb > Cd > 1, indicating that
E
.
crassipes
possessed a strong biological enrichment ability to accumulate a variety of trace elements. The translocation factor (TF) values decreased in the order of Cu > Zn > Cr > As > Pb > Cd, all of which were lower than 1, which showed that the absorption of the trace elements by
E
.
crassipes
was mainly accomplished in the roots. Moreover, the health risk assessments showed that the carcinogenic and noncarcinogenic risks of the edible parts of
E
.
crassipes
were 26.1 and 4.6 times higher than the maximum acceptable value recommended by the USEPA for adults and children of approximately 39.2- and 6.9-fold, respectively. Children were more sensitive than adults. The main trace elements that led to noncarcinogenic risks were As, Cr and Cu, while Cr and As led to carcinogenic risks. The results of the Pearson correlation showed positive correlations with the concentrations of Zn, Cr and As between
E
.
crassipes
and the water as well as negative correlations of the contents of all six trace elements between
E
.
crassipes
and the sediment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.