Human exposure to mercury is a serious problem of public health in Amazon. As in other vulnerable populations throughout the world, Amazonian riverine populations are chronically exposed to this metal and some symptoms of mercury intoxication were already detected in these populations. However, studies on the genetic susceptibility to mercury toxicity in the Amazon are scarce, and they tested a limited number of individuals. In this context, apolipoprotein E gene (APOE) is a key element with a well-established association among their alleles and the neurodegenerative consequences of mercury intoxication. However, no studies have addressed APOE genotyping in Amazonian exposed populations. Additionally, epidemiological studies with APOE genotyping in Amazon have been restricted to indigenous populations. Therefore, this work analyzed for the first time the genotypic and allelic profiles of APOE in Amazonian riverine populations chronically exposed to mercury. Eight hundred and twenty three individuals were enrolled in our study donating blood (794) and/or hair (757). APOE genotyping was analyzed by real-time PCR. Total mercury and mercury species were quantified by ICP-MS and GC-pyro-AFS, respectively. Genomic ancestry markers were evaluated by multiplex-PCR reaction, separated by capillary electrophoresis on the ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. The 𝜀3 and 𝜀3/𝜀3 were the most frequent allele and genotype, respectively, followed by 𝜀4 allele and 𝜀3/𝜀4 genotype. Only 𝜀2/𝜀2 genotype was not found, suggesting that the absence of this genotype is a generalized phenomenon in Amazon. Also, our data supported an association between the presence of APOE4 and the Amerindian origin in these populations. Fifty-nine individuals were identified at maximum risk with levels of mercury above 10 μg/g and the presence of APOE4. Interestingly, among individuals with high mercury content, APOE4-carriers had high mercury levels than APOE2-carriers, pointing to a different heavy metal accumulation according to the APOE allele. These data suggest that APOE4, in addition to a possible pharmacodynamic effect, may influence pharmacokinetically the mercury exposure causing its higher accumulation and leading to worse deleterious consequences. Our results may aid in the development of prevention strategies and health policy decision-making regarding these at-risk vulnerable populations.
Mercury is a xenobiotic metal that is a highly deleterious environmental pollutant. The biotransformation of mercury chloride (HgCl 2 ) into methylmercury chloride (CH 3 HgCl) in aquatic environments is well-known and humans are exposed by consumption of contaminated fish, shellfish and algae. The objective of the present study was to determine the changes induced in vitro by two mercury compounds (HgCl 2 and CH 3 HgCl) in cultured human lymphocytes. Short-term human leukocyte cultures from 10 healthy donors (5 females and 5 males) were set-up by adding drops of whole blood in complete medium. Cultures were separately and simultaneously treated with low doses (0.1 to 1000 µg/l) of HgCl 2 and CH 3 HgCl and incubated at 37ºC for 48 h. Genotoxicity was assessed by chromosome aberrations and polyploid cells. Mitotic index was used as a measure of cytotoxicity. A significant increase (P < 0.05) in the relative frequency of chromosome aberrations was observed for all concentrations of CH 3 HgCl when compared to control, whether alone or in an evident sinergistic combination with HgCl 2 . The frequency of polyploid cells was also significantly increased (P < 0.05) when compared to control after exposure to all concentrations of CH 3 HgCl alone or in combination with HgCl 2 . CH 3 HgCl significantly decreased (P < 0.05) the mitotic index at 100 and 1000 µg/l alone, and at 1, 10, 100, and 1000 µg/l when combined with HgCl 2 , showing a synergistic cytotoxic effect. Our data showed that low concentrations of CH 3 HgCl might be cytotoxic/genotoxic. Such effects may indicate early cellular changes with possible biological consequences and should be considered in the preliminary evaluation of the risks of populations exposed in vivo to low doses of mercury.
Mercury exhibits cytotoxic and mutagenic properties as a result of its effect on tubulin. This toxicity mechanism is related to the production of free radicals that can cause DNA damage. Methylmercury (MeHg) is one of the most toxic of the mercury compounds. It accumulates in the aquatic food chain, eventually reaching the human diet. Several studies have demonstrated that prolactin (PRL) may be differently affected by inorganic and organic mercury based on interference with various neurotransmitters involved in the regulation of PRL secretion. This study evaluated the cytoprotective effect of PRL on human lymphocytes exposed to MeHg in vitro, including observation of the kinetics of HL-60 cells (an acute myeloid leukemia lineage) treated with MeHg and PRL at different concentrations, with both treatments with the individual compounds and combined treatments. All treatments with MeHg produced a significant increase in the frequency of chromatid gaps, however, no significant difference was observed in the chromosomal breaks with any treatment. A dose-dependent increase in the mitotic index was observed for treatments with PRL, which also acts as a co-mitogenic factor, regulating proliferation by modulating the expression of genes that are essential for cell cycle progression and cytoskeleton organization. These properties contribute to the protective action of PRL against the cytotoxic and mutagenic effects of MeHg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.