Receptor signaling in the growth hormone (GH)-growth hormone receptor (GHR) system is controlled through a sequential two-step hormone-induced dimerization of two copies of the extracellular domain (ECD) of the receptor. The regulatory step of this process is the binding of the second ECD (ECD2) to the stable preassociated 1 : 1 GH/ECD1 complex on the cell surface. To determine the energetics that governs this step, the binding kinetics of 38 single-and double-alanine mutants in the hGH Site2 contact with ECD2 were measured by using trimolecular surface plasmon resonance (TM-SPR). We find that the Site2 interface of hGH does not have a distinct binding hot-spot region, and the most important residues are not spatially clustered, but rather are distributed over the whole binding surface. In addition, it was determined through analysis of a set of pairwise double alanine mutations that there is a significant degree of negative cooperativity among Site2 residues. Residues that show little effect or even improved binding on substitution with alanine, when paired with D116A-hGH, display significant negative cooperativity. Because most of these pairwise mutated residues are spatially separated by Ն10 Å, this indicates that the Site2 binding interface of the hGH-hGHR ternary complex displays both structural and energetic malleability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.