Stress can alter immunological, neurochemical and endocrinological functions, but its role in cancer progression is not well understood. Here, we show that chronic behavioral stress results in higher levels of tissue catecholamines, greater tumor burden and more invasive growth of ovarian carcinoma cells in an orthotopic mouse model. These effects are mediated primarily through activation of the tumor cell cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway by the beta(2) adrenergic receptor (encoded by ADRB2). Tumors in stressed animals showed markedly increased vascularization and enhanced expression of VEGF, MMP2 and MMP9, and we found that angiogenic processes mediated the effects of stress on tumor growth in vivo. These data identify beta-adrenergic activation of the cAMP-PKA signaling pathway as a major mechanism by which behavioral stress can enhance tumor angiogenesis in vivo and thereby promote malignant cell growth. These data also suggest that blocking ADRB-mediated angiogenesis could have therapeutic implications for the management of ovarian cancer.
Background-We studied Dicer and Drosha, components of the RNA-interference machinery, in ovarian cancer.
Purpose: There is growing evidence that stress and other behavioral factors may affect cancer progression and patient survival.The underlying mechanisms for this association are poorly understood.The purpose of this study is to determine the effects of stress-associated hormones norepinephrine, epinephrine, and cortisol on the invasive potential of ovarian cancer cells. Experimental Design:The ovarian cancer cells EG, SKOV3, and 222 were exposed to increasing levels of either norepinephrine, epinephrine, or cortisol, and the in vitro invasive potential was determined using the membrane invasion culture system. Additionally, the effects of these stress hormones on matrix metalloproteinase-2 (MMP-2) and MMP-9 were determined by ELISA. The effects of the h-adrenergic agonist isoproterenol on in vivo tumor growth were determined using nude mice. Results: Stress levels of norepinephrine increased the in vitro invasiveness of ovarian cancer cells by 89% to 198%. Epinephrine also induced significant increases in invasion in all three cell lines ranging from 64% to 76%. Cortisol did not significantly affect invasiveness of the EG and 222 cell lines but increased invasion in the SKOV3 cell line (P = 0.01). We have previously shown that ovarian cancer cells express h-adrenergic receptors. The h-adrenergic antagonist propanolol (1 Amol/L) completely blocked the norepinephrine-induced increase in invasiveness. Norepinephrine also increased tumor cell expression of MMP-2 (P = 0.02 for both SKOV3 and EG cells) and MMP-9 (P = 0.01and 0.04, respectively), and pharmacologic blockade of MMPs abrogated the effects of norepinephrine on tumor cell invasive potential. Isoproterenol treatment resulted in a significant increase in tumor volume and infiltration in the SKOV3ip1 in vivo model, which was blocked by propranolol. Conclusions: These findings provide direct experimental evidence that stress hormones can enhance the invasive potential of ovarian cancer cells. These effects are most likely mediated by stimulation of MMPs.There is extensive evidence supporting stress-immune relationships in healthy adults (1) and a growing body of literature demonstrating these relationships in cancer patients (2 -4). Meta-analyses and reviews have reported alterations in cellular immunity (decreased T-cell response to mitogen stimulation, decreased natural killer cell cytotoxicity, and altered production of cytokines) in association with chronic stress and/or depressed affect (5, 6). Among cancer patients, behavioral factors may serve as predictors of clinical outcome, such as response to therapy and overall survival (7 -11). These findings suggest that psychosocial stress factors not only affect the immune system adversely but also contribute to poor outcome in cancer patients. However, no study has shown that stressinduced changes in cancer outcomes are mediated by changes in immune system function. Here, we consider the alternative hypothesis that stress hormones directly affect tumor cells to alter their malignant potential.Immune s...
Purpose: Curcumin, a component of turmeric, has been shown to suppress inflammation and angiogenesis largely by inhibiting the transcription factor nuclear factor-nB (NF-nB). This study evaluates the effects of curcumin on ovarian cancer growth using an orthotopic murine model of ovarian cancer. Experimental Design: In vitro and in vivo experiments of curcumin with and without docetaxel were done using human ovarian cancer cell lines SKOV3ip1, HeyA8, and HeyA8-MDR in athymic mice. NF-nB modulation was ascertained using electrophoretic mobility shift assay. Evaluation of angiogenic cytokines, cellular proliferation (proliferating cell nuclear antigen), angiogenesis (CD31), and apoptosis (terminal deoxynucleotidyl transferase^mediated dUTP nick end labeling) was done using immunohistochemical analyses. Results: Curcumin inhibited inducible NF-nB activation and suppressed proliferation in vitro. In vivo dose-finding experiments revealed that 500 mg/kg orally was the optimal dose needed to suppress NF-nB and signal transducers and activators of transcription 3 activation and decrease angiogenic cytokine expression. In the SKOV3ip1 and HeyA8 in vivo models, curcumin alone resulted in 49% (P = 0.08) and 55% (P = 0.01) reductions in mean tumor growth compared with controls, whereas when combined with docetaxel elicited 96% (P < 0.001) and 77% reductions in mean tumor growth compared with controls. In mice with multidrugresistant HeyA8-MDR tumors, treatment with curcumin alone and combined with docetaxel resulted in significant 47% and 58% reductions in tumor growth, respectively (P = 0.05). In SKOV3ip1 and HeyA8 tumors, curcumin alone and with docetaxel decreased both proliferation (P < 0.001) and microvessel density (P < 0.001) and increased tumor cell apoptosis (P < 0.05).Conclusions: Based on significant efficacy in preclinical models, curcumin-based therapies may be attractive in patients with ovarian carcinoma.
Purpose: Focal adhesion kinase (FAK) plays a critical role in ovarian cancer cell survival and in various steps in the metastatic cascade. Based on encouraging in vitro results with FAK silencing, we examined the in vivo therapeutic potential of this approach using short interfering RNA (siRNA) in the neutral liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). Experimental Design:Therapy experiments of FAK siRNA with or without docetaxel were done using human ovarian cancer cell lines SKOV3ip1, HeyA8, and HeyA8MDR in nude mice. Additional experiments with a cisplatin-resistant cell line (A2780-CP20) were also done. Assessments of angiogenesis (CD31), cell proliferation (proliferating cell nuclear antigen), and apoptosis (terminal deoxynucleotidyl transferase^mediated dUTP nick end labeling) were done using immunohistochemical analysis.Results: A single dose of FAK siRNA-DOPC was highly effective in reducing in vivo FAK expression for up to 4 days as assayed by Western blot and immunohistochemical analysis. Therapy experiments were started 1 week after injection of the ovarian cancer cells. Treatment with FAK siRNA-DOPC (150 Ag/kg twice weekly) reduced mean tumor weight by 44% to 72% in the three cell lines compared with the control group (Ps < 0.05 for HeyA8, A2780-CP20, and SKOV3ip1).When FAK siRNA-DOPC was combined with docetaxel, there was even greater reduction in mean tumor weight in all models (all Ps < 0.05). Similar results were observed in combination with cisplatin. Treatment with FAK siRNA-DOPC plus docetaxel resulted in decreased microvessel density, decreased expression of vascular endothelial growth factor and matrix metalloproteinase-9, and increased apoptosis of tumor-associated endothelial cells and tumor cells. Conclusions: Taken together, these findings suggest that FAK siRNA-DOPC plus docetaxel or platinum might be a novel therapeutic approach against ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.