Interfaces between organelles are emerging as critical platforms for many biological responses in eukaryotic cells. In yeast, the ERMES complex is an endoplasmic reticulum (ER)–mitochondria tether composed of four proteins, three of which contain a SMP (synaptotagmin-like mitochondrial-lipid binding protein) domain. No functional ortholog for any ERMES protein has been identified in metazoans. Here, we identified PDZD8 as an ER protein present at ER-mitochondria contacts. The SMP domain of PDZD8 is functionally orthologous to the SMP domain found in yeast Mmm1. PDZD8 was necessary for the formation of ER-mitochondria contacts in mammalian cells. In neurons, PDZD8 was required for calcium ion (Ca2+) uptake by mitochondria after synaptically induced Ca2+-release from ER and thereby regulated cytoplasmic Ca2+ dynamics. Thus, PDZD8 represents a critical ER-mitochondria tethering protein in metazoans. We suggest that ER-mitochondria coupling is involved in the regulation of dendritic Ca2+ dynamics in mammalian neurons.
Presenilin-1 (PS1) and -2 (PS2), which when mutated cause familial Alzheimer disease, have been localized to numerous compartments of the cell, including the endoplasmic reticulum, Golgi, nuclear envelope, endosomes, lysosomes, the plasma membrane, and mitochondria. Using three complementary approaches, subcellular fractionation, ␥-secretase activity assays, and immunocytochemistry, we show that presenilins are highly enriched in a subcompartment of the endoplasmic reticulum that is associated with mitochondria and that forms a physical bridge between the two organelles, called endoplasmic reticulum-mitochondria-associated membranes. A localization of PS1 and PS2 in mitochondria-associated membranes may help reconcile the disparate hypotheses regarding the pathogenesis of Alzheimer disease and may explain many seemingly unrelated features of this devastating neurodegenerative disorder. Alzheimer disease (AD) is a late onset neurodegenerative disorder characterized by progressive neuronal loss, especially in the cortex and the hippocampus. 1 The two main histopathological hallmarks of AD are the accumulation of extracellular neuritic plaques, consisting predominantly of -amyloid (A), and of neurofibrillary tangles, consisting mainly of hyperphosphorylated forms of the microtubule-associated protein tau. 1The vast majority of AD is sporadic, but mutations in amyloid precursor protein (APP), presenilin-1 (PS1), and presenilin-2 (PS2) have been identified in the rarer familial form, which is similar to sporadic AD but has an earlier age of onset.PS1 and PS2 are aspartyl proteases that cleave their substrates within transmembrane regions. The active forms of PS1 and PS2 are N-and C-terminal fragments, which are produced by cleavage of full-length presenilin in its "loop" domain.2 PS1 and PS2 are components of the ␥-secretase complex that processes a number of plasma-membrane proteins, including Notch, Jagged, E-cadherin, and, most relevant to AD, APP. The ␥-secretase complex also contains three other structural subunits: APH1, nicastrin (also called APH2), and presenilin enhancer protein 2.2 Following cleavage of APP by -secretase, ␥-secretase cleaves the ϳ100-aa C-terminal "-stub" to release small amyloidogenic fragments, 40-and 42-aa in length (A40 and A42), that have been implicated in the pathogenesis of AD, as well as a ϳ60-aa APP intracellular domain.
The immediate responses to inhibition of phosphatidylcholine (PC) biosynthesis in yeast are altered phospholipid levels, slow growth, and defects in the morphology and localization of ER and mitochondria. With chronic lipid imbalance, yeast adapt. Lipid droplet (LD) biogenesis and conversion of phospholipids to triacylglycerol are required for restoring some phospholipids to near wild-type levels. We confirmed that the Unfolded Protein Response is activated by this lipid stress and find that Hsp104p is recruited to ER aggregates. We also find that LDs form at ER aggregates, contain polyubiquitinated proteins and an ER chaperone, and are degraded in the vacuole by a process resembling microautophagy. This process, microlipophagy, is required for restoration of organelle morphology and cell growth during adaptation to lipid stress. Microlipophagy does not require ATG7 but does requires ESCRT components and a newly identified class E VPS protein that localizes to ER and is up-regulated by lipid imbalance.
Interactions between mitochondria and the cytoskeleton are essential for normal mitochondrial morphology, motility and distribution. While microtubules and their motors have been established as important factors for mitochondrial transport, emerging evidence indicates that mitochondria interact with the actin cytoskeleton in many cell types. In certain fungi, such as the budding yeast and Aspergillus, or in plant cells mitochondrial motility is largely actin-based. Even in systems such as neurons, where microtubules are the primary means of long-distance mitochondrial transport, the actin cytoskeleton is required for short-distance mitochondrial movements and for immobilization of the organelle at the cell cortex. The actin cytoskeleton is also involved in the immobilization of mitochondria at the cortex in cultured tobacco cells and in budding yeast. While the exact nature of these immobilizations is not known, they may be important for retaining mitochondria at sites of high ATP utilization or at other cellular locations where they are needed. Recent findings also indicate that mutations in actin or actin-binding proteins can influence mitochondrial pathways leading to cell death. Thus, mitochondria-actin interactions contribute to apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.